Terahertz wireless networks: applications, challenges, and early solutions

Dr. D. Moltchanov Tampere University dmitri.moltchanov@gmail.com

Outline

- □ THz band capabilities and promises
- Challenges and limitations
- □ Applications and use-cases
 - Macro world use-cases
 - Micro-scale applications
- Earlier solutions
 - Addressing micromobility challenges
 - Physical layer security and eavesdropping

Where is THz band? (THF)

	Диапазон частот	Длина волны
Industry, IEEE	0.3 – 3 THz	1 mm – 100 μm
Academy	0.1 – 10 THz	3 mm – 30 μm
Academy	0.06 – 10 THz	5 mm – 30 μm
Early phase	Focus: 275-325 GHz	Focus: ~1 mm

Why THz? Modern cellular

Limitations:

- \circ 2.4 and 5-6GHz spectrum
- Overcrowded: lack of "free" spectrum
- Millimeter waves (30-100 GHz):
 - One of the major breakthroughs in 5G
 - Limited by 10 GHz of aggregated bandwdth

1 GHz

- Expected rate per BS: ~10-20 Gbps
 - Fine now, not enough for the future
- $\circ~$ Visible Light Spectrum (VLC), 400-790 THz
 - Giant spectrum with extreme capacity
 - Line-of-sight communications only

Trend: matching rates

Trend: electronics miniaturization

Terahertz is interesting solution

- Extreme throughput (Shannon law: C=B*log₂(1+SNR))
- Perfect fit for micro/nano devices (antenna size: $\lambda/2$)

- Needs to be adapted to communications systems
- New challenges

Motivating example

Ubiquitous connectivity

Advantages

Much higher resources (from 50 GHz and up)

- May reach multiple Tbps if needed
- Even with 0.1 bit/s/Hz spectral efficiency

D Miniaturized antennas ($\lambda \sim 1$ mm at 300 ГГц)

○ Micro/nano applications (nanonetworks ☺)

Retains "radio" properties up to some extent

- Penetrates through obstacles
- Reflects/diffuse from obstacles

□ Highly directional communications

• No interference - noise limited operation

Challenges

Electronics: "THz gap"

No efficient signal generation miniaturized electronics

- o Too high for radio
- Too low for optics

Antenna limitations

Too small aperture

Isotropic radiator:
$$S_{g\phi} = \frac{\lambda^2}{4\pi} D_0$$

- Limits emitted power
- Naturally calls for antenna arrays
- Antenna example: 1024x1024 elements
 Gain: >100 dBm, HPBW: <1°

Akyildiz, I. F., & Jornet, J. M. (2016). Realizing ultra-massive MIMO (1024× 1024) communication in the (0.06–10) terahertz band. Nano Communication Networks, 8, 46-54.

Antenna temperature

Equating consumed and dissipated powers Utilizing Stefan-Boltzmann law

$$P_{cons} = P_{Tx}(1-\eta)$$

$$P_{diss} = \frac{\lambda^2}{36} \left(\sigma (T_a^4 - T_r^4) + h_{air}(T_a - T_r) \right)$$

- T_a antenna temperature,
- T_r room temperature,
- h antenna efficiency,
- h_{air} air heat transfer coefficient,
- σ Stefan-Boltzmann constant

$$P_{diss} \ge P_{cons} \to \sigma \cdot (T_a^4 - T_r^4) + h_{air} * T_a - (T_r * h_{air} + 36P_{Tx} * (1 - \eta)/\lambda^2) \ge 0$$

Antenna temperature

Temperature < 50°C:

- OdBm up to 300GHz
- -10dBm up to 1THz
- -20dBm up to 3THz
- □ WiFi 23 dBm

Antenna arrays needed!!!

Band up until 1 THz is ythe most promising

Propagation losses

Two cases comparison:

- 1) Directional Tx + Omnidirectional Rx (MxM elements + 1)
- 2) Directional Tx + Directional Rx (MxM + MxM)

Path losses (simple Friis model)

$$L = P_{Tx} + (173 - 10\log_{10}(B)) + G_{Tx} + G_{Rx} - S,$$

S – required SNR at Rx, e.g., 5 dB

Coverage radius:

$$d = 10^{L/20 + 7.38 - \log_{10}(f)}$$

Propagation losses

Parameters:

- \square P_{Tx} = 0 dBm
- $\Box SNR = 5 dB$
- 10GHz bandwidth

Effective coverage:

- Dir. + Omni.: <2m
- Dir. + dir.: <50m

Antenna arrays needed!

Keep frequency as low as possible

Atmospheric absorption

>Additional losses!

Transparency windows

Overall loss, dB

First window!!!

Number	Range	Bandwidth	Pulse duration
1	0.10 – 0.54 THz	440 GHz	1.48 ps
2	0.63 – 0.72 THz	95 GHz	6.53 ps
3	0.76 – 0.98 THz	126 GHz	4.92 ps
4	7.07 – 7.23 THz	160 GHz	2.59 ps
5	7.75 – 7.88 THz	130 GHz	3.88 ps

Channel model

Path loss

$$L_T(f,d) = L_P(f,d) + L_A(f,d)$$

First path – Friis model

$$L_P(f,d) = \left(\frac{4\pi df}{c}\right)^2$$

Atmospheric absorption Coefficients from HITRAN database

$$L_A(f,d) = \frac{1}{\tau(f,d)} \qquad \tau(f,d) = e^{-k(f)d} = e^{-\sum_{G,I} k_{G,I}(f)d}$$

τ - transmissivity (Booger-Lambert-Beer law)

$$P_{Rx_0} = Ar_0^{-2}e^{-Kr_0}$$

Difference compared to mmWave

Common:

Blockage

Different:

- Antenna arrays naturally required
- Extreme directivity needed (<1°)
- Signal fades away much quicker (exponent)

What else? Extreme directivity induces additional problems...

Applications

Macro: THz access and backhaul

- Backhaul rate >> access rate
 - o Range 275-325GHz
 - o Static channels
 - o Beamalignment at installation
 - o Low interference
- **3**GPP Rel. 16
 - o IAB technology
 - o Microwave + mmWave
 - o mmWave + THz

Macro: 100 Gbps access

THz last meter access in 275-325GHz

"Last Meter Indoor Terahertz Wireless Access: Performance Insights and Implementation Roadmap," to appear in IEEE Communications Magazine, 2018.

Macro: Data kiosk

- Get 1-2 Tbyte in 250ms
- Usage is similar to NFC
- □ Already implemented by NTT DoCoMo (IEEE 802.15.3d)

Petrov, V., & Kürner, T. (2020). IEEE 802.15. 3d: First Standardization Efforts for Sub-Terahertz Band Communications towards 6G. *arXiv preprint arXiv:2011.01683*.

Micro: board-to-board (B2B)

Petrov, V., Kokkoniemi, J., Moltchanov, D., Lehtomäki, J., & Koucheryavy, Y. (2017). Enabling simultaneous cooling and data transmission in the terahertz band for board-to-board communications. Physical Communication, 22, 9-18.

B2B: PER and rate

Micro: networks-on-chip (NoC)

Most parameters expect for number of cores and technology plateaued Higher performance only increasing the number of cores (AMD Zen 1/2/3 Gen.)

NoC: designs (core-cache design)

S. Abadal et al., "Graphene-enabled wireless communication for massive multicore architectures," IEEE Communications Magazine, 2013.

THz Interconnect (T) Electrical interconnect (E)

Q. J. Gu, "THz interconnect: the last centimeter communication," in IEEE Communications Magazine, 2015

AMD Infinity Fabric....

Capacity scaling

Addressing challenges: micromobility

Micromobility effects

Extra-massive antenna arrays

- Compensating for path loss
- Avoiding overheating
- Comes naturally!
- Main lobe HPBW
 - ~120°/N
 - What if N=1024?
 - HPWB ~ 0.1° градуса

ANTENNA HPBW AND ITS APPROXIMATION

Array	Value, direct calculation	Approximation
64x1	1.585	1.594
32x1	3.171	3.188
16x1	6.345	6.375
8x1	12.71	12.75

Affecting components

- UE is mobile in nature
 - o Macro-mobility
 - o Micro-mobility
 - Micromobility
 - Displacements along OX, OY, OZ
 - Vertical/horizontal rotations
- □ Small HPBW and micromobility
 - Small HPWB -> unstable
 - Large HPBW -> low rate

Micromobility: ball game on smartphone

Micromobility: ongoing call

Add. observations:
Depends on app
Many parameters
Complex process

Methodology

Proposal:

- □ Geometric interpretation
 - Random walk for each axis and type of turns
 - □ Joint them together to characterize FPT
 - Random walks are complex
 - □ Reducing 3D to 2D, or even to 1D if possible
- Determine beamsearch procedure
 - □ When to start searching?
 - Search regularly? How often?
 - Any other solutions?

Petrov, V., Moltchanov, D., Koucheryavy, Y., & Jornet, J. M. (2020). Capacity and Outage of Terahertz Communications with User Micro-mobility and Beam Misalignment. IEEE Transactions on Vehicular Technology.

AP

distance

UE shift

Displacements: dX, dY, dZ

- Cone main lobe model
- □ Affects insignificantly
- dZ can be excluded

Effect of rotations: $d\zeta$, $d\theta$ and $d\phi$

Effects of displacements: dY, dX

- Equivalent to rotations plus change of dZ
- Observations: moving from black dot to green one is equivalent to rotations from black dot to blue dot *and* increase of the distance (dZ displacement) from blue dot to green dot

Reducing dimensions

*Why? sum of Brownian motions is again a Brownian motion.

Time to outage

- From 2D to 1D
- Euclidean distance between random walks*
- □ We need to determine FPT first passage time

*Distance between two 2D Brownian motions is Bessel process of order 2

Beamforming schemes

- $\Box \quad T_A \text{connectivity time (time to outage)}$
- One-demand search (WiGig style 11ad/ay):
- Periodic search: T_U period (searching based on min(T_A , T_U))
- □ T_B time to search depends on (i) the number of antenna configurations at both sides (antenna elements), (ii) array switching time (~2µs or less), and (iii) type of search (hierarchical, full search)

Results [1/3]

G f=0.3THz, B=50GHz, P_A =23dBm, δ=5μs

Results [2/3]

G f=0.3THz, B=50GHz, P_A =23dBm, δ=5μs

Results [3/3]

Addressing challenges: eavesdropping

Physical layer security

Ideas at the glance:

Secure at PHY

Applications:

- 1. Specific secure systems
- 2. Military systems
- 3. Cellular?

One more measure in addition to encryption!

Physical layer security in THz

Not new as a concept:

- 1. Directionality greatly helps
- 2. Still eavesdropping is possible
- 3. Demonstrated in [1]

[1] J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, "Security and Eavesdropping in Terahertz Wireless Links," Nature, November 2018.

Eavesdropping feasible in spite of high directionality!

More comprehensive approach

Idea at the glance:

- Exploit multi-path
- Fragment packets

Implementation:

- 1) Often at least 5 paths
- 2) Can be decoded when all parts have been received
 - Cypher block chaining (CBC)

Difficult to eavesdrop all paths simultaneously!

System model

The considered scenario:

- 1. One channel UE-AP, distance x
- 2. PPP UE $[\mu / m^2]$
- 3. PPP of attackers $[\lambda / m^2]$

Considered schemes:

- $\Box \quad One \ path \ C \uparrow, \ p_{E} \uparrow$
- Choosing the best
- $\Box \quad Multiple \ paths \ C \checkmark, \ p_{E} \checkmark$
- Utilize all paths

Capacity

Observations:

- 1. Capacity decreases with density of blockers
- 2. Single path capacity gain is higher in sparse deployments
- 3. Multiple paths are worth from 5% to 20% (90 Gbit/s vs. 110 Gbit/s)

Capacity degradation is insignificant!

Eavesdropping probability

Observations:

- 1. Smaller HPBW → smaller prob.
- 2. Three regimes:
 - I. Both are good
 - II. Multiple paths better
 - III. Both are bad
- 3. Regime II, gives 5 times better p_E

Multiple paths scheme is better!

Secrecy rate

Defined as: $C_S(x) = (1 - p_E)C(x)$

Observations:

- 1. More blockers \rightarrow smaller rate
- 2. More attackers \rightarrow smaller rate
- 3. Multiple paths better up to 40%

Multiple paths scheme has much better secrecy rate!