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About Tomsk

Tomsk was founded in 1604 and
served as a fortress, a merchants' city,
a centre of the gold rush, and the cen-
tre of a huge province covering several
regions of today's Russia and Ka-
zakhstan. The establishment in 1888 of
the first university beyond the Urals
changed Tomsk dramatically. The city
is both old and always young; its
humming life is filled with hopes,
talents, and youthful energy.

Four universities are found within
one and a half kilometers! No other
city in the world can boast such close proximity of its higher educational institutions. The two more
universities are also quite close by; in Tomsk, everything you want is right outside. More than 72,000
students attend classes in Tomsk institutions of higher education, so every eighth resident of Tomsk is
a student.

Tomsk has many local cultural institutions, including several drama theaters, a children's theater,
and a puppet theater. Major concert venues in the city include the Conservatory Concert Hall and
the Tomsk Palace of Sport. The city also has cultural centres dedicated to the German, Polish, and
Tatar languages and culture.

One of the most remarkable features of Tomsk is its picturesque architecture, created by the hands
of masters from Europe: Marfeld, Gut, and Orzeszko (Poland), Langer (Austria), Geste (Scotland),
Gibert (France), Turskiy (Germany), and Tatarchuh and Homich (Poland). Their masterpieces of dif-
ferent genres, borrowed from Europe, decorated Tomsk. Tomsk architecture has always been its “must
see!”  There is probably no one who is indifferent to the variety of Tomsk architectural styles.
Here one can find wooden architecture, art nouveau, baroque, classicism, renaissance, and eclecticism.
Architects from all over the world dreamed of “conquering” Tomsk, which was situated in the most
eastern part of Western Siberia and possessed a tremendous cultural potential. They managed to create
a “European corner” in a Russian provincial city that attracted scientists and gifted people from around
the world. Each of them made a great impact on the history and culture of the city, making it up-to-
date and expressive.
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Tomsk State University

KEY DATES

The establishment by decree of Emperor Alexander II of the Siberian
Imperial University in Tomsk, the first university in Siberia.

Opening of Imperial Tomsk University, and the first enrollment of
students conducted at the single, Medical Faculty.

Opening of the Faculty of Law.

Opening of the Physics and Mathematics Faculty and the History and
Philology Faculties.

Creation of the Siberian Physical and Technical Institute, the first major
physics research center in Siberia.

Opening of the Research Institute of Applied Mathematics and
Mechanics and the Research Institute of Biology and Biophysics.

The inclusion of TSU in the State Code of Particularly Valuable
Objects of Cultural Heritage of the Peoples of the Russian Federation.

Receiving from National Quality Assurance a certificate of TSU’s
compliance with the Quality Management System to international stan-
dard ISO 9001: 2000.

Acceptance into the European University Association (EUA).

The designation of Tomsk State University as a National Research
University.

Renaming into the Federal State Educational Institution of Higher
Professional Education as National Research Tomsk State University.

Start of the implementation of the Programme to Improve the
Competitiveness of the University.
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Nowdays

CAMPUS
• 10 museums
• Herbarium
• Siberian Botanical Garden
• Accommodation
• Swimming pool
• Centre of Culture
• Research Library (4,000,000 volumes)

FACULTY
• 20 faculties and educational institutes
• 130 Master’s programmes (including English

programmes)
• 152 areas and specialities
• 152 departments and 38 centres of preuniver-

sity training and vocational guidance in Siberia
and Kazakhstan 

• Siberian Physical-Technical Institute
• about 15,000 students (and about 2,000 inter-

national student)
• Tomsk Regional Teleport 
• Supercomputer SKIF Cyberia 
• Scientific-educational channel TV-University 
• Innovation-based Technological Business-

Incubator 
• MBA Centre
• Institute of Innovations in Education 
• Institute of Distance Education 
• Institute of Applied Mathematics and Mechanics
• Research Institute of Biology and Biophysics
• Institute of Strength Physics and Materials Sci-

ence
RESEARCH

• 42 leading scientific schools 
• 12 centres of multiple access to unique equip-

ment 
• 47 science-based educational centres 
• 47 small-scale innovation enterprises 
• 42 academic schools entered the presidential

list of Russian leading scientific schools 
• 24 dissertation councils, about 20 Doctor of

Science and 100 Candidate of Science disserta-
tions are defended annually 

• 31 academicians and corresponding members of
Russian Academy of Sciences, Russian Aca-
demy of Medical Sciences, Russian Academy
of Education, Russian Academy of Agricultural
Science, 51 Russian State Prize Winners 

• About 100 members of the Russian Academy
of Sciences, Academy of Medical Sciences and
the CIS states, more than 150 State Prize win-

ners, two Nobel Prize winners studied and
worked at TSU 

• The University has more than 500 Doctors and
1000 Candidates of Sciences

• Young scientists and students were awarded 29
medals of the Russian Academy of Sciences,
over 500 students received medals and diplo-
mas of the Ministry of Education and Science 

• During the last 10 years 4 TSU teams of scien-
tists were awarded the State Prize of the Rus-
sian Federation in the field of science and tech-
nology, the RF Government Prize in Science
and Technology, and the Russian President
Award in the field of education

FACILITIES 
• Multilevel educational system: preuniversity

training, specialist training, undergraduate stu-
dies, Master’s course, graduate course, Doctor of
Science level programme, retraining and ad-
vanced training, second higher education  

• Exchange programmes with the leading inter-
national institutions of higher education, pres-
tigious scholarships and grants of the largest
international funds, educational and research
organizations 

• Innovative approaches and techniques in
the sphere of science and education, their inte-
grated implementation at all levels of the edu-
cational and scientific process, innovative edu-
cational trajectories, continual upgrading of
the academic disciplines by means of intro-
ducing scientific research findings to the aca-
demic programmes 

• Training and advanced training of the teaching
staff and specialists, including those from dif-
ferent educational institutions; development of
the export of education services 

• Large-scale programmes of cooperation with
Russian and international universities and re-
search centres, the leading institutes of the Rus-
sian Academy of Sciences, Russian Academy
of Medical Sciences, Russian Academy of Ag-
ricultural Science, the enterprises RusAtom,
RusKosmos and others 

• In the list of TSU partners are 750 enterprises
and organizations; over 130 contracts for coo-
peration and strategic partnership in education
and scientific activities have been signed with
the largest Russian and international science-
based educational foundations, banks, and en-
terprises of the real sector of economy.



5

History of the Workshops on Retrial Queues

The series of international workshops on Retrial Queues started in Madrid, September 22−24, 1998.
The 1st International Workshop on Retrial Queues (WRQ'98) gathered 25 participants from 12

countries. The Chairman was Professor Jesus R. Artalejo. The Proceedings were published in a special
issue of Top (Volume 7, Number 2, 1999).

Professor Alexander N. Dudin chaired the 2nd International Workshop on Retrial Queues
(WRQ'99), Minsk, June 22−24, 1999. The workshop was conducted jointly with the 15th Belarussian
Workshop on Queueing Theory. The Proceedings were published in the monograph' Queues, Flows,
Systems and Networks', Belarus State University Publications.

The 3rd International Workshop on Retrial Queues (WRQ'00) was held in Amsterdam, March
13−15, 2000, at the Tinbergen Institute. The Program Chair was Professor Henk C. Tijms from Vrije
University of Amsterdam. About 23 participants from both Western and Eastern European countries,
USA, Canada, Israel, Sweden and Japan attended the meeting. The European Commission gave sup-
port to the above conferences through the INTAS project 96-0828 entitled 'Advances in Retrial
Queueing Theory'.

The 4th International Workshop on Retrial Queues (WRQ'02) was held in Cochin, December
17−21, 2002, at the Cochin University of Science and Technology. The conference Chairman was Pro-
fessor A. Krishnamoorthy. The Proceedings were published in the book 'Advances in Stochastic Mod-
elling', Notable Publications, Inc., New Jersey.

Professor B.D. Choi chaired the 5th International Workshop on Retrial Queues (WRQ'04) at the
Telecommunication Mathematics Research Center, Korea University. This meeting was combined
with a Workshop on Performance Evaluation of Telecommunication Systems.

The 6th International Workshop on Retrial Queues (WRQ'06) was held at "La Cristalera", Miraflo-
res de la Sierra, Madrid, July 8−10, 2006. The Program Chair was Prof. A Gomez-Corral. This edition
gathered 23 participants from 9 countries. A selection of original, high quality contributions will be
published at the special issue "Advances in Retrial Queues" of the European Journal of Operational
Research.

The 7th International Workshop on Retrial Queues (WRQ'08) was held in Athens, July 17−19,
2008. The Conference Chairman was Prof. A. Economou. 31 participants from 12 countries attended
this workshop. A selection of the best papers was published in the special issue "Algorithmic and
Computational Methods in Retrial Queues" of the journal Computers & Operations Research (Volume
37, Number 7, 2010).

Professor Q.L. Li was the Chairman of the 8th International Workshop on Retrial Queues
(WRQ'10) which was held at the Tshinghua University, Beijing, July 27−29, 2010. This edition gath-
ered together about 40 participants from 12 countries. A selection of papers was published in Opera-
tional Research: An International Journal.

Prof. P. Moreno was the Chairwoman of the 9th International Workshop on Retrial Queues
(WRQ'12) which was held at the Universidad Pablo de Olavide, Seville, Spain, July 28−30, 2012. This
edition gathered together about 20 participants from 13 countries. A selection of papers will be pub-
lished soon in Asia-Pacific Journal of Operational Research.

The 10th International Workshop on Retrial Queues was held on 24−26 July 2014, in Tokyo Insti-
tute of Technology, Tokyo (Japan). The Chairman was Prof. Tuan Phung-Duc. This workshop is dedi-
cated to the memory of Professor J. R. Artalejo. A selection of high quality papers has been be pub-
lished in a Special Issue on Retrial Queues and Related Models in Annals of Operations Research.

The 11th International Workshop on Retrial Queues was held in Amsterdam from August 31, 2016
until September 2, 2016. The Chairman was Dr. R. D. Nobel of the Vrije University of Amsterdam in
The Netherlands. There was about 35 participants. A steering committee was chosen to continue
holding the workshops in the further years.
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12th International Workshop 
 on Retrial Queues and Related Topics

 A B S T R A C T S

Optimal information disclosure in strategic queueing systems

Bara Kim
Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea

Since the works of Naor [7] and Edelson and Hildebrand [1], the economic analysis of queueing
systems with strategic customer behavior has gained a considerable amount of interest in recent years.
Information about the queue length is an important factor for customers who make the decision
whether to join a queue or not. Queueing systems with strategic customer behavior are usually divided
into two groups: observable and unobservable queues. In an observable queue customers are informed
about the queue length upon their arrival, whereas in an unobservable queue customers are not in-
formed about the queue length upon their arrival.

It is important to investigate if it is effective for the service provider (server) to provide the infor-
mation about the queue length to the customers, with the intention to increase the service provider's
profit (revenue). There has been a large amount of research on the effects of the information level on
the strategic behavior of customers, and the service provider's profit. If the service provider has a fixed
income from each customer who joins the queue, the service provider should maximize the throughput
of the system in order to maximize its profit. Simhon et al. [8] studied the optimal information disclo-
sure policies in an M/M/1 queue. They proved that the policy of informing customers about the current
queue length when the queue length is below the specified threshold and hiding the information when
the queue length is above the threshold, is never optimal.

I present a result on the optimal information disclosure policy studied by Kim and Kim [5].  I also
present a recent result on equilibrium pricing in strategic queues with competing service providers.

REFERENCES

 1. Edelson N.M., Hildebrand D.K. Congestion tolls for Poisson queuing processes // Econometrica. 1975. V. 43. P. 81−92.
 2. Hassin R. Rational Queueing, CRC Press, 2016.
 3. Hassin R., Haviv M. To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems, Kluwer, Boston, 2003.
 4. Kim B., Kim J. Equilibrium strategies for a tandem network under partial information // Operations Research Letters. 2016.
V. 44. No. 4. P. 532−534.

 5. Kim B., Kim J. Optimal information disclosure policies in a strategic queueing model // Operations Research Letters. 2017.
V. 45. No. 2. P. 181−186.

 6. Kim J., Kim B. An asymmetric lottery Blotto game with a possible budget surplus and incomplete information // Econom-
ics Letters. 2017. V. 152. P. 31−35.

 7. Naor P. The regulation of queue size by levying tolls // Econometrica. 1969. V. 37. P. 15−24.
 8. Simhon E., Hayel Y., Starobinski D., Zhu Q. Optimal information disclosure policies in strategic queueing games // Opera-
tions Research Letters. 2016. V. 44. P. 109−113.

Bara Kim is a Professor in the Department of Mathematics at Korea University, Seoul, Korea. He
received B.S., M.S. and Ph.D. in Mathematics from Korea Advanced Institute of Science and Tech-
nology (KAIST). His research interests include probability theory, queueing theory, mathematical
finance, insurance models, game theory, mechanism design, applied operations research and their
applications.

E-mail: bara@korea.ac.kr
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Polling systems with and without retrials

Jacques Resing
Department of Mathematics and Computing Science Eindhoven University of Technology,

Eindhoven, The Netherlands

A polling system is a single-server multi-queue system, in which the server attends to the queues in
some, often cyclic, order. Many situations in which several types of users compete for access to
a common resource can be described by a polling model. Polling systems received in the past much
attention in the literature. For example, many different service disciplines at the queues (like exhaus-
tive, gated, one-limited, ...) were studied in detail. Lateron, considerable unification was obtained by
the realization that the generating function of the joint queue-length distribution at all queues, at ep-
ochs at which the server arrives at a particular queue, can be obtained explicitly if the service disci-
pline at all queues is of so-called branching type (like exhaustive or gated).

More recently, motivated by an application in optical networks, we started to look at polling sys-
tems with retrials in which customers, instead of waiting in a physical queue, will go into an orbit
when they arrive at a station at the wrong instant (e.g., whenever the server is serving customers in
the other stations). We show that, under certain conditions, also for these types of systems the gene-
rating function of the joint distribution of the number of customers in the different stations at several
embedded time points can be found by using the theory of multi-type branching processes with immi-
gration. This enables us to do a detailed analyis of the system. Amongst others, we will discuss in this
talk heavy traffic analysis, workload decomposition, pseudo-conservation laws and mean waiting time
approximations. At the end we also pay some attention to optimization issues in these types of sys-
tems.

Jacques  Res ing  is an Assistant Professor in the Stochastic Operations Research group at
Eindhoven University of Technology (TU/e), where he began working in 1992. His research is in
general focused on applied probability and in particular on queueing theory. Amongst others, he
studied several polling systems, fluid queues and tandem queues. Another area of Jacques' inter-
est, both in his research and teaching activities, is Insurance Risk. He is active as teacher in
courses of the coherent package Finance and Risk and several of his papers study the analysis of
insurance risk models. Finally, in recent years he has also become interested in the optimization
of condition-based maintenance models.

E-mail: j.a.c.resing@tue.nl
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A survey of recent results in finite-source retrial queues with collisions

Anatoly Nazarov1, János Sztrik2, *, Anna Kvach1

1 National Research Tomsk State University, Tomsk, Russia
2 University of Debrecen, Debrecen, Hungary

The aim of the present paper is to give a review of recent results on single server finite-source retrial queuing
systems with collision of the customers. There are investigations when the server is reliable and there are
models when the server is subject to random breakdowns and repairs depending on whether it is idle or busy.
Tool supported, numerical, simulation and asymptotic methods are considered under the condition of
unlimited growing number of sources. In general, we could prove that the steady-state distribution of the
number of customers in the service facility can be approximated by a normal distribution with given mean
and variance. Using asymptotic methods under certain conditions in steady-state the distribution of the
sojourn time in the orbit and in the system can be approximated by a generalized exponential one.
Furthermore, it is proved that the distribution of the number of retrials until the successful service in the limit
is geometrically distributed.

Keywords: finite-source queuing system, retrial queues, collisions, server breakdowns and repairs, analytic
results, algorithmic approach, stochastic simulation, asymptotic analysis.

Introduction

Finite-source retrial queues are very useful and effective stochastic systems to model several prob-
lems arising in telephone switching systems, telecommunication networks, computer networks and
computer systems, call centers, wireless communication systems, etc. To see their importance the in-
terested reader is referred to the following works and references cited in them, for example [3, 9, 15,
19]. Searching the scientific databases, we have noticed that relatively just a small number of papers
have been devoted to systems when the arriving calls (primary or secondary) causes collisions to the
request under service and both go to the orbit, see for example [1, 7, 18, 23, 38].

Nazarov and his research group developed a very effective asymptotic method [37] by the help of
which various systems have been investigated. Concerning to finite-source retrial systems with colli-
sion we should mention the following papers [24–27, 33].

Sztrik and his research group have been dealing with systems with unreliable server/s as can be
seen, for example in [2, 42, 43, 48] and that is why it was understandable that the two research groups
started cooperation in 2017.

Our investigations have been based on the analytical, numerical, simulation and asymptotic ap-
proached as treated in, for example [3, 5, 6, 10, 16, 20, 22, 28, 29, 32, 37, 40, 41, 47, 49].

The primary aim of the present paper is to give a survey on the results obtained in this field in the
near past by means of different methods. Doing so we have tried to unify the notation appeared in dif-
ferent publications and to use the standard notation of Western-style papers which is many times dif-
fers from the Russian-style ones.

Model description and notations

In the following we introduce the model in the most general form as it was treated by the help of
numerical and asymptotic methods.

Let us consider a retrial queuing system of type M/GI/1//N with collision of the customers and an
unreliable server (Fig. 1). The number of sources is N and each of them can generate a primary request
during an exponentially distributed time with rate / Nλ . A source cannot generate a new call until the
end of the successful service of this customer.

If a primary request finds the server idle, he enters into service immediately, in which the required
service time has a probability distribution function B(x). Let us denote its service rate function by

1( ) ( )(1 ( ))y B y B y −′μ = −  and its Laplace-Stieltjes transform by *( )B y , respectively. If the server is

                                                     
* The work/publication of J. Sztrik is supported by the EFOP-3.6.1-16-2016-00022 project. The project is co-financed by the

European Union and the European Social Fund.
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busy, an arriving (primary or repeated) customer involves into collision with customer under service
and they both move into the orbit. The inter-retrial times of customers are supposed to be exponen-
tially distributed with rate / Nσ . We assume that the server is unreliable, that is its lifetime is sup-
posed to be exponentially distributed with failure rate 0γ  if the server is idle and with rate 1γ  if it is
busy. When the server breaks down, it is immediately sent for repair and the repair time is assumed to
be exponentially distributed with rate 2γ . We deal with the case when the server is down all sources
continue generation of customers and send it to the orbit, similarly customers may retry from the orbit
to the server but all arriving customers immediately go into the orbit. Furthermore, in this unreliable
model we suppose that the interrupted request goes to the orbit immediately and its next service is in-
dependent of the interrupted one. Of cause, in the case of reliable server 0 1 0γ = γ = . All random vari-
ables involved in the model construction are assumed to be independent of each other.

Fig. 1. Retrial queueing system of type M/GI/1//N
with collisions of the customers and an unreliable server

Let J(t) be the number of customers in the system at time t, that is, the total number of customers in
the orbit and in service. Similarly, let K(t) be the server state at time t, that is

0,    if the server is idle,
( ) 1,    if the server is busy,

2,    if the server is down (under repair).
K t

⎧⎪= ⎨
⎪⎩

Thus, we will investigate the process {K(t),J(t)}, which is not a Markov-process unless the service
time is exponentially distributed. To be a Markov one we will use the method of supplementary vari-
ables, namely, we will consider two variants: the residual service time method and the elapsed service
time method depending on what is the aim of the investigation.

Let us denote by Y(t), and Z(t), the supplementary random process equal to the elapsed service time
of the customer till the moment t and by Z(t) the residual service time, that is time interval from
the moment t until the end of successful service of the customer, respectively.

It is obvious that {K(t),J(t),Y(t)} and {K(t),J(t),Z(t)} are Markov processes. Let us note, that Y(t)
and Z(t) are defined only in those moments when the server is busy, that is, when K(t)=1.

Let us define the stationary probabilities as follows:

0

1

1

2

( ) { 0, },
( , ) { 1, , },
( , ) { 1, , },

( ) { 2, }.

P j P K J j
P j y P K J j Y y
P j z P K J j Z z

P j P K J j

= = =
= = = <
= = = <
= = =
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Of cause, in the case of exponentially distributed service time the steady-state probabilities are de-
noted as follows:

( ) { , }, 0,1,2, 0,..., .kP j P K k J j k j N= = = = =

The steady-state distribution of the server's state is denoted by

( ), 0,1,2kR P K k k= = = ,

and the distribution of number of customers in the system is designated by ( ) ( ),P j P J j= =
0,..., .j N=

It is clear that in the case of reliable server all the probabilities where K=2 are 0.
The main aim of the investigations is to get these distributions and other performance measures of

the systems, such as the distribution of the sojourn time in the system, distribution of the total service
time, distribution of the number of retrials. These are very complicated problems and to the best
knowledge of the authors there are no exact analytical formulas to the solutions. That is the reason we
have tried to obtain the characteristics of different systems by the help of tool supported, algorithmic,
stochastic simulation and asymptotic methods.

Systems with a reliable server

M / M / 1  S y s t e m s

Algorithmic approach. In papers [25, 33] the steady-state Kolmogorov equations were derived,
and the distribution of the system's state were obtained by an algorithmic approach. Then the distribu-
tion of the number of customers in the system were calculated and used to validate the asymptotic re-
sults.

Asymptotic approach. The main contribution of paper [33] is that the in steady-state the prelimit
distribution of the number of customers in the system can be approximated by a normal distribution
with given mean and variance. In paper [33] 2nd and 3rd order approximations of the prelimit distri-
bution were compared to the exact distribution obtained by the algorithmic method. In different pa-
rameter setup and for different N the applicability of the asymptotic method was validated, and some
conclusions were drawn.

A more complicated problem, namely the distribution of the sojourn time in the service facility was
investigated in [24] by the help of asymptotic methods as N tends to infinity.

M / G I / 1  S y s t e m

This section deals with the results when the required service times are generally distributed but in
the examples the gamma distribution is used due to its useful properties. Namely, it is easy to see that
its squared coefficient of variation can be less, equal or greater than 1 depending on the values of the
shape and scale parameters.

Algorithmic approach. Paper [26] deals with the algorithmic approach how to get the steady-state
distribution of the system. The method of supplementary variable technique with residual service time
were applied and several numerical examples were treated with gamma distributed service time. The
results helped the validation of asymptotic results for the same model.

Stochastic simulation. Papers [35, 36] are devoted to the asymptotic analysis of the mean total
service time, distribution of the sojourn time in the system and the distribution of number of retrials. It
must be noted that the results have not been validated by simulation, yet. Meanwhile simulations have
been carried out the estimations for the mean and variance of the sojourn time have been obtained, and
the distribution of the number of retrials also has been determined. The simulation analysis will be
published in the near future.

Asymptotic approach. In this part the asymptotic results published in [35, 36] are summarized.
Before doing that, we need some notations, namely

1 10
( ) ( ), ( ) ( ) .xB e dB x

∞∗ −αα = δ κ = λ + σ − λ κ∫
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Then 1κ  can be obtained from

1 1
1

1

( ) ( ( ))
1 ,

2 ( ( ))
B

B

∗

∗

δ κ δ κ
κ = − ⋅

λ − δ κ
(1)

and the distribution of the server's state can be determined by
*

0 1* *
1 1 ( ), .

2 ( ) 2 ( )
BR R

B B
− δ

= =
− δ − δ

Introducing the notations

1 1 1 0(1 ), ( ) ( ) ,A R R B∗ ∗⎡ ⎤= λ − κ α = −δ α⎣ ⎦

we obtain
[ ]1 0 1 1 0

2
1 1 1 0 1 0

( ) ( )
.

( ) ( ) ( ( ) 1) ( ) ( ) ( )

( )
( ) ( ( ) )

A R B A A R

A R R R B R R B

∗

∗ ∗ ∗ ∗

⋅ δ δ + − δ +
κ =

σ − λ δ − − δ − + δ σ − λ δ − δ − λ

Consequently, the steady-state prelimit distribution of the number of customers in the system can
be approximated by a normal distribution with mean 1Nκ and variance 2Nκ .

For the distribution of the number of retrials/transitions of the tagged customer into the orbit we
have the following results.

Let ν be the number of transitions of the tagged customer into the orbit, then

lim ,
1 (1 )N

qz
q z

ν

→∞
=

− −
E

where value of parameter q has a form
*

0 ( ).q R B= δ

From the proved theorem it is obviously follows that the probability distribution
{ }, 0,P n nν = = ∞  of the number of transitions of the tagged customer into the orbit is geometric and

{ } (1 ) , 0, .nP n q q nν = = − = ∞

Consequently, by using the law of total probability for the characteristic function of the so-
journ/waiting time W of the tagged customer in the orbit we get

(1 ) .iuW qe q q
q iuN
σ

≈ + −
σ −

E

In the case of N →∞ the limiting probability distributions of the sojourn time of the customer in
the system T and the sojourn time of the customer in the orbit W coincide, namely

{ } { }lim exp lim exp (1 ) .
N N

T W qiu iu q q
N N q iu→∞ →∞

σ
= = + −

σ −
E E

Systems with an unreliable server

In many practical situations the server is not reliable and after a random time it can fail and needs
repair which also takes a random duration. To deal with these service interruptions several papers have
been published, see for example [2, 8, 11, 12, 14, 21, 39, 43, 45, 46, 50]. In the following parts we
summarize our results obtained by different methods.

M / M / 1  S y s t e m

Tool supported approach by MOSEL. Because of the fact, that in many practical situations the
state space of the describing Markov chain is very large, it is rather difficult to calculate the system
measures in the traditional way of writing down and solving the underlying steady-state equations. To
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simplify this procedure several software packages have been developed and effectively used for per-
formance evaluation of complex systems, see for example [11–14, 17]. In our investigations a similar
software tool called MOSEL (Modeling, Specification and Evaluation Language) has been used to
formulate the model and to obtain the performance measures. Paper [4] deals with the model formula-
tion, derivation of several performance measures and generation of illustrative examples showing an
interesting phenomenon of finite-source retrial queues, that is under specific parameter setup the mean
waiting/ sojourn time has a maximum as the arrival intensity is increasing.

Stochastic simulation. To validate the applicability of the asymptotic approach we need either
numerical or simulation results. The correct operation of the simulation software was tested by the
numerical sample examples. The investigations carried out by the simulation and asymptotic methods
have been submitted for publication, see [30, 31].

Asymptotic approach. First we deal with the distribution of the number customers in the system
as it has been published in [30]. The first order asymptotic results are the following

{ } { }1lim exp exp ,
N

Jiw iw
N→∞

= κE

where 1κ  is the positive solution of the equation

( )1 1 11 ( ) 0,R− κ λ −μ κ =

where the stationary distributions of probabilities 1( )kR κ  of the server state 0,1,2k =  are obtained as
follows

( )
( )

( )
( )

[ ]

1
10 2 1 2

0 1
2 2 1 1

1
1 1 0 1
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a
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−
κγ + γ γ + γ⎧ ⎫
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κ
κ = ⋅ κ

κ + γ + μ
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here ( ) ( )1 1 11 .a κ = − κ λ + σκ
The second order asymptotic results are

{ } 2
1

2
( )lim exp exp ,

2N

J N iwiw
N→∞

⎧ ⎫− κ
= κ⎨ ⎬
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E
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( ) ( ){ }
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2 1 1 1 1 2 1 1 2

2
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R b b R
b b
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λ + μ γ − − κ λ γ + γ

and             ( )1 0 1
1 0 2

1 1

1 ( )( )
, .

R R
b R b

a a
− κ λ σ − λ −

= =
+ γ + μ + γ + μ

Consequently, the prelimit distribution of the number of customers in the system can be approxi-
mated by a normal distribution with mean 1Nκ  and variance 2Nκ .

One of the main contributions of paper [31] is that for the limit of the characteristic function of the
normalized sojourn time we have

{ }lim exp (1 ) ,
N

T qiw q q
N q iw→∞

σ
= + −

σ −
E

where 1

1 1

(1 ) .
(1 )

q − κ λ
=

− κ λ + σκ
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Consequently, the characteristic function of the sojourn time of the customer in the system in the
prelimit situation of finite N can be approximated by

(1 ) .iuT qe q q
q iuN
σ

≈ + −
σ −

E (2)

For the distribution of the number of transitions/retrials of the tagged customer into the orbit we got
the following results.

Let ν  be the number of transitions of the tagged customer into the orbit, then

lim ,
1 (1 )N

qz
q z

ν

→∞
=

− −
E

resulting that the probability distribution { }, 0,P n nν = = ∞  of the number of transitions of the tagged
customer into the orbit is geometric and has the form

{ } (1 ) , 0, .nP n q q nν = = − = ∞

Consequently, the prelimit characteristic function of the sojourn/waiting time W of the tagged cus-
tomer in an orbit can be approximated as

(1 ) .iuW qe q q
q iuN
σ

≈ + −
σ −

E

In the case of N →∞ the limiting probability distributions of the sojourn time of the customer in the
system T and the sojourn time of the customer in an orbit W coincide, namely

{ } { }lim exp lim exp (1 ) .
N N

T W qiu iu q q
N N q iu→∞ →∞

σ
= = + −

σ −
E E

M / G I / 1  S y s t e m

Stochastic simulation. In paper [44] the required service time is supposed to be gamma distributed
and several cases were treated and compared.

Asymptotic approach. These results have been published in [34] using supplementary variable
technique. The limit of the characteristic function of the scaled number of customers in the systems
can be written in the following form

{ } { }1lim exp exp ,
N

Jiw iw
N→∞

= κE

where 1κ is the positive solution of the equation

( ) [ ]1 1 0 1 1 1 1 1 11 ( ) ( ) ( ) ( ) 0,R R R− κ λ − δ κ κ − κ + γ κ =

here ( ) ( )1 1 11 ,δ κ = − κ λ + σκ

and the stationary distributions of probabilities 1( )kR κ  of the server's state 0,1,2k =  are determined
as follows
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Stochastic simulation of special systems

In paper [44] systems with not only gamma distributed service times but also gamma distributed
inter-arrival and gamma distributed retrial times have been investigated.

Conclusions

In this paper tool supported, numerical, simulation and asymptotic methods were considered under
the condition of unlimited growing number of sources in a finite-source retrial queue with collisions of
customers and an unreliable server. In the near future the two research groups would like to continue
their investigations in this direction including systems with impatient customers, systems embedded in
a random environment, systems with two-way communications, just to mention some alternative gen-
eralizations.
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Modeling two-way communication systems with retrial queues*

Attila Kuki, János Sztrik, Ádám Tóth, Tamás Bérczes
University of Debrecen, Debrecen, Hungary

In this paper we consider systems with two-way communication. These systems can be modeled ef-
fectively by the help of retrial queueing systems. The research on two-way communications has been
becoming more and more popular topic of investigations for the last years [1, 2]. The most important
characteristics of two-way communication is that and idle server can look for calls outside and inside
of the system (primary and secondary calls).

Authors has been investigated the case, when a secondary outgoing call after servicing is sent back
to the source [3]. The novelty of this paper is, that a more realistic case is considered regarding secon-
dary outgoing calls from the orbit. A call being in the orbit implies that the call still has an unserved
incoming request. In the model presented here the served secondary outgoing call from the orbit is
sent back to the orbit again, where the call is able to retry his request for servicing the original incom-
ing call. In this model an additional operational mode is investigated. When a secondary outgoing call
from the orbit arrives to the server, after serving the outgoing call, the pending incoming request will
be served immediately, as well. When this two-phase service is finished, the call is sent back to
the source. A loss function is also considered.

Mathematical model

The system is modeled by a finite source retrial queueing model with one server.
In the source there are N calls. All of the times, intervals are exponentially distributed and totally

independent. λ1 is the primary generating rate from the source. The call is served at the idle server
with parameter μ1. In case of busy server, the call is sent to the orbit, where it may retry their requests
for service after a random waiting time with parameter ν1

In the other hand, the idle server after some exponentially distributed period can make an outgoing
calls:

• The server may call a call from the source to be served (primary outgoing call) with parameter λ2,
• The server is able to make a call from the orbit, as well (secondary outgoing call). It is performed

with parameter ν1.

The outgoing calls (primary and secondary) are served at the server with parameter μ2.
For an outgoing call from the orbit, two cases can be considered.
• Case 1 The call came from the orbit, is sent back to the orbit after the outgoing service is finished,
• Case 2 The server is able to serve the incoming request immediately after the outgoing job was

finished. That means a two-phase service.
We denote the number of calls in orbit and the server state at time t by O(t) and S(t), respectively.

The state space of the process (S(t), O(t)) is the set of {0, 1, 2, 3} × {0, 1, 2, ..., N−1} in Case 2, and
{0, 1, 2, 3} × {0, 1, 2, ...,N} in Case 1.

Because of the finite state space these two-dimensional Markov processes are always stable.
The stationary probabilities are computed by the help of MOSEL-2 tool. Using these probabilities

and Little formulas the system charactesistics (utilizations, average number of jobs in orbit, response
times, waiting times, etc.) can be also calculated.

The expected loss E(L) function also has been considered:

E(L) = Cw(1 – U1 – U2) + C1μ1U1 + C2μ2U2 + CP(E(O) + U1 + U2).

                                                     
* The research work of Attila Kuki, Janos Sztrik, and Tamás Bérczes was granted by Austrian-Hungarian Bilateral

Cooperation in Science and Technology project 2017-2.2.4-T_eT-AT-2017-00010. The research work of Ádám Tóth was
supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project was supported by the European Union, co-
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Simulation and numerical examples

Investigating the functionality and the behavior of the system several numerical calculations were
performed. Solving the system balance equations described above the MOSEL-2 tool was used. From
the probabilities the well known system characteristics are also be calculated. The most interesting
performance characteristics obtained by these tools can be graphically presented. As an example, the
mean waiting times in Case2 is displayed here for different types of outgoing calls.

Fig. 1. Mean Waiting Time (Case 2) vs. λ1

Conclusions

The numerical results proof that in Case 2 the most important performance measures (waiting time,
utilization etc.) are better than in Case 1. A loss function keeping balance between utilization and
waiting times has been also introduced. In the future it would be interesting to investigate the sensitiv-
ity of the loss function to the parameter changing.
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MMAP/M/∞ Retrial Queue with Search for Customers completed Service
in the Offer Zone*

Ambily P. Mathew, A. Krishnamoorthy, V.C. Joshua
Department of Mathematics, CMS College, Kottayam, Kerala, India

Service providers of telecommunication industry, software vendors and similar business firms
adopt various strategies to attract more customers. These strategies include offering free/services at
discounted rates for a short period and providing attractive offers on service packages. The mathe-
matical model proposed by Krishnamoorthy et. al in [1] is motivated by such a scenario. In the case of
retrial queues, Artalejo et al. [2] introduced the concept of orbital search to ensure the maximum utili-
zation of the server and to minimize the waiting time of a customer. In [3] search helps in minimizing
the loss of priority customers. In this paper we propose orbital search as an effective tool to maintain
the optimum number of customers in a retrial queueing model working with an offer zone.

Mathematical model
We consider MMAP/M/∞ retrial queueing system with two service stations namely, the main sta-

tion and the offer zone. The main station is an infinite server station and provides usual paid services.
Service packages provided by the offer zone are strategically designed to attract the maximum number
of customers to the main station. We assume that the offer zone holds only a finite number N of cus-
tomers. The offer zone works in n  random environments. Each of these environments corresponds to
one or more offers and special tariff packages or a combination of these. The duration of the environ-
ment i  is assumed to follow Phase Type distribution with representation PH(βi, Si) of order Mi where

{1,2,..., }i n∈ .  Let pi be the probability that the offer zone is in environment i.
Customers arriving to the system are of two types: type A and type B. Type A customers do not

wish to have an offer and upon arrival they directly enter the main station. Type B customers are at-
tracted by the offers and they wish to have service at the offer zone. Two types of customers arrive to
the service stations according to a Marked Markovian Arrival Process (MMAP) of order m  with rep-
resentation (D0, D1, D2) where D1 = pD* and D2 = (1−p)D* and 0 ≤ p ≤ 1. If the offer zone is full at
the time of arrival of a type B customer, it enters the main station with probability γ or leaves the sys-
tem with probability (1−γ). The service times at the main station and the offer zone in environment i
are exponentially distributed with parameters μ and μi respectively where {1,2,..., }i n∈ .

Not all the customers who have completed service from the offer zone move to the main station to
continue with the usual service. Let η be the probability with which a type B customer move to
the main station after completing service in the offer zone. The service providers keep a database with
maximum capacity M of type B customers who are not joining the main station after completing serv-
ice in the offer zone. We consider this database as an orbit. Deletion of customer records from the or-
bit occur at time intervals exponentially distributed with parameter ζ. Each customer from this orbit
makes retrial for service in the main station and the time between successive retrials are exponentially
distributed with parameter υ.

When the number of customers in the main station is below a pre-assigned level L, the operators go
in search of customers from the orbit. Database formed while the orbital customers were in the offer
zone may be used for orbital search. We assume that the orbital customers enter the main station at
time intervals exponentially distributed with parameter υ*.

Denote by N1(t), N2(t) and N3(t) the number of customers in the main station, the offer zone and
the orbit at time t respectively. Let E(t), S(t) and A(t) denote the environment, environmental phase
and the arrival phase at time t respectively. X* = {N1(t), N2(t), N3(t)), E(t), S(t), A(t)} is a Markov proc-
ess and it describes the process under consideration. This model can be considered as a Level depend-
ent Quasi-Birth -Death (LDQBD) process.
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Mathematical analysis

Analyzing the model for stability, we can see that the infinite server queueing model considered in
this paper is always stable. We use Neuts-Rao truncation Method [4] for the analysis of the model. A
steady state solution is obtained by Matrix Geometric Method [5].

Expected number of customers in the main station, expected number of customers entering the of-
fer zone from each environment, expected number of customers in the orbit and expected number of
customers entering the main station as a result of orbital search are some of the important measures of
performance evaluated using the steady state probability vector. Loss of customers from the system
occurs due to capacity restrictions of the offer zone and the orbit. Evaluation of the probabilities of
these loses help us to optimize the maximum capacities of the offer zone and the orbit.

An optimization problem that helps us to determine the level L at which the search mechanism is to
be switched off is also evaluated. The orbital search proposed in this paper is an efficient tool for
maintaining an optimum number of customers in the main station.
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Stationary probability distribution of the calls number in the orbit
for MMPP/M/2 RQ-system with impatient calls

Olga Vygovskaya, Elena Danilyuk, Svetlana Moiseeva
Tomsk State University, Tomsk, Russia

In this paper we consider the retrial queueing system of MMPP/M/2 type with input MMPP-flow
of events and impatient calls.

There are many papers devoted to the RQ-system models where an arriving call joints the orbit
with some probability p and leaves the system with the probability 1–p when there are not available
service devices at the time. Some authors name such customers as non-persistent or p-non-persistent
customers [1, 2]. In present research impatient customer is a customer in the orbit that can repeat an
attempt to reach the server again or can leave the orbit after a random time without server recalling.

Since real telecommunication systems are usually multiserver retrial queue [3], in the proposed pa-
per RQ-system consisting of two service devices is considered. And we use the Markov Modulated
Poisson Process as input flow. Validity of the models with MMPP input flow for multi-server queue-
ing systems description is shown in papers [4, 5]. The problem for MMPP input flow with one server
under system heavy load condition is solved in [6]. We consider models with two servers and impa-
tient calls under system heavy load condition.

Asymptotic analysis method is used for research the considered RQ-system.

Mathematical model

We consider a retrial queueing system with an infinite orbit and two servers. The input flow is de-
fined by the Markov Modulated Poisson Process. A customer, who arrives into the system, when at
least one of the two servers is free, instantly occupies this server. If all of the devices are busy, the call
goes to the orbit, where it stays during a random time. After the delay the customer makes an attempt
to reach any server again. If it is free, the call occupies it; otherwise the call immediately joins the or-
bit. From the orbit calls (impatient calls) can leave the system after a random time. The delay time of
calls in the orbit, the calls service time and the impatience time of calls in the orbit have exponential
distribution.

The problem is to get stationary probability distribution of the number of calls in the orbit for
the system under review.

Asymptotic analysis method results

Asymptotic analysis method is proposed for the solving problem of finding distribution of the number
of calls in the orbit under a system heavy load and long time patience of calls in the orbit condition.
The theorem about the form of the asymptotic probability distribution is formulated and proved.

Theorem 1. Stationary probability distribution of the calls number in the orbit for RQ-system of
MMPP/M/2 type with impatient calls in the orbit under a system heavy load and long time patience of calls
in the orbit condition can be approximated by the Gaussian distribution with mean and variance equal to
(λ−2μ)/α and λ/α respectively, where λ = rΛe, and Λ is the matrix of the input calls flow parameters, r is
the row-vector of the stationary probability distribution of the Markov chain managing the input calls flow,
e is the unit row-vector, μ, σ, α are the exponential distribution parameters, accordingly, of the calls service
time, the calls delay time in the orbit, the calls leaving the system from the orbit.

Numerical results

We compared asymptotic and exact distributions for different values of parameters λ and α to dem-
onstrate the applicability area of the asymptotic results depending on parameters of the considered
RQ-system. Using the Kolmogorov distance between simulation and approximation results as a me-
sure and supposing it equals to 0.05 and less as acceptable accuracy of a result, we obtained parame-
ters values in which the approximation can be applied.
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Values of the Kolmogorov distance for the system parameters μ = 1, σ = 1, λ = {5.297; 10.575},
α = {2; 1; 0.5; 0.1} are presented in Table. In Figures 1, 2 there are examples of comparison of the as-
ymptotic and the exact distribution densities.

Kolmogorov distances between asymptotic and exact distributions under given parameters

α = 2 α = 1 α = 0.5 α = 0.1
λ = 5.297 0.082 0.025 0.021 0.013
λ = 10.575 0.040 0.019 0.016 0.017

a b

c d

Fig. 1. Comparisons of the asymptotic (dashed line) and the exact (solid line) probability densities
when λ = 5.297 and a) α = 2, b) α = 1, c) α = 0.5, d) α = 0.1

a b

c d

Fig. 2. Comparisons of the asymptotic (dashed line) and the exact (solid line) probability densities
when λ = 10.575 and a) α = 2, b) α = 1, c) α = 0.5, d) α = 0.1
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Conclusions

In the present paper, two servers retrial queueing system of MMPP/M/2 type with impatient cus-
tomer in the orbit is considered. It is proved that the probability distribution of the calls number in the
orbit can be approximated by the Gaussian distribution under the system heavy load and long time pa-
tience of calls in the orbit condition.

Numerical results allows drawing a conclusion that increasing of the parameter λ when parameter α
is fixed leads to reduction of the Kolmogorov distances between asymptotic and exact distributions,
and decreasing of the parameter α when parameter λ is fixed leads to reduction of the Kolmogorov
distances between asymptotic and exact distributions.
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MAP/PH/1 retrial queue with server breakdown, repair and search
for interrupted customers*

Dhanya Babu, A. Krishnamoorthy, V.C. Joshua
Department of Mathematics, CMS College, Kottayam, Kerala, India

Interruption to service often happens when using internets, electronic devices or even in our day to
day life. In this paper we consider a single server retrial queue with server breakdown, repair and
search of interrupted customers with some probability p.

The concept of orbital search in retrial queue is introduced in [1] with a purpose to reduce the
waiting time of a customer and also to minimize the idle time of the server. A multi-server retrial
queueing model with MAP arrival is considered in [2]. Several researchers have analyzed different
types of interruptions since 1958. A natural question arises is that once service is interrupted what
should be done on taking back the interrupted customer for service again. By giving priority to the in-
terrupted customers here we bring forth the idea of search mechanism for bringing up the interrupted
customer out of the orbit for service again.

Mathematical model

We consider a single server retrial queuing system. Primary customers arrive according to Mark-
ovian arrival process with representation (D0, D1) of order n. An arriving customer finding a free
server enters into service immediately, otherwise the customer enters into orbit I of infinite buffer size.
Service time is assumed to follow phase type distribution with representation PH(α, T) of order l. A
customer who is in service either successfully complete service or get interrupted due to server break-
down. Interruption occur according to poisson process with parameter γ. Customers whose service get
interrupted join the orbit II of finite capacity N. Repair time is assumed to follow phase type distribu-
tion with representation PH (β, S) of order m. Both the customers from orbits I and II retries with ex-
ponential rates µ1 and µ2 respectively. So there arises a competition between primary arrivals, retrials
from orbits I and II. At every service completion epoch or after repair the server goes for search of in-
terrupted customers with probability p (0 < p < 1) and remains idle with probability 1−p. Interruption
occur any number of times and the service of an interrupted customer is assumed to repeat identically.

Let N1(t), C(t), N2(t), J1(t), J2(t), J3(t) denote the number of customers in orbit I, status of the server,
number of customers in orbit II, phases of the service process, repair process and arrival process re-
spectively. C(t) take the values 0, 1 and 2 according to whether the server is idle, in service or under
repair. The Markov process of the model is represented by

X *= {(N1(t), C(t), N2(t), J1(t), J2(t), J3(t)); t 0≥ }. This process is a continuous time markov chain
which turns out to be level independent quasi-birth-death process (LIQBD). This is conveniently and
efficiently solved by Neuts Matrix Geometric Method (see [3]).

Mathematical analysis

Stability condition of the model is obtained. Steady-state vector is obtained using Matrix Geometric
Method. Several performance measures are obtained of which some important performance measures
are expected number of customers in orbit I, expected number of interrupted customers in orbit II, ex-
pected number of customers in the system when the server is idle, expected number of customers in
the system when the server is in service, expected number of customers in the system when the server
is under repair, expected number of customers in the system, probability that the server is idle, prob-
ability that the server is in service, probability that the server is under repair, probability that the inter-
rupted customers are blocked from entering into orbit II. Several numerical examples are illustrated.

                                                     
* Research work of the first author is supported by Maulana Azad National Fellowship [F1-17.1/2015-16/MANF-2015-17-

KER-65493] of University Grants Commission, India.
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A numerical example

In Fig.1 x-axis is taken as search
probability p and y-axis is taken as ex-
pected number of interrupted customers.
Expected number of interrupted custom-
ers decreases with search probability in-
creases as expected.
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A finite-source retrial queue with two types of customers

Velika Dragieva
University of Forestry, Sofia, Bulgaria

This presentation deals with a single server retrial queue where the server serves a finite number of
customers (sources of demands). These customers are of two types, called regular customers and sub-
scribed customers, respectively. Queueing models combining a finite population and retrials have
many applications in practice: our daily activity, telephone switching systems, telecommunication and
computer networks, call centers, cellular and local area networks, etc. Recently, a single server retrial
queues with finite number of customers and different additional features of the service have been ex-
tensively studied. This includes service with an unreliable server ([4, 6]), service with two phases of
the service times ([5]), service with collisions ([3]), service with random access ([2]), service with
two-way communication ([1]), etc. To the best of our knowledge there are no investigations about
a retrial queue with one server that serves a finite number of customers, some of which have a special
status and are called subscribed or special customers. The motivation for studying such model are
many real situations like call centers, repair centers, or medical centers, where along with the regular
customers there is a special group of subscribed customers, or customers (patients) under special care
whose service consists mainly of preventive activities, initiated by the server (operator) when being
idle.

The model

We consider a queueing model with one server that serves N customers:  K regular customers and
(N-K) subscribed customers. Each of these customers produces a Poisson flow of demands with inten-
sity 1λ  and 2λ , respectively. At any time t the server can be in one of three possible states – idle, busy
with service of a regular customer (regular service) or busy with a special customer (special service).
This is indicated by the variable C(t) equal to 0,1 or 2 respectively. If the server is idle at the time of
a regular customer arrival, the customer starts to be served. Otherwise it enters a virtual waiting room,
called orbit and after an interval, exponentially distributed with parameter μ  repeats its attempt for
service. The customers in the orbit are called secondary or repeated customers, while those that are
outside it - primary regular customers or regular customers in free state. The service duration of pri-
mary and secondary regular customers follows the same arbitrary probability distribution. After
the service is over the regular customers of both types (primary or secondary) move to a free state, i.e.
can produce a Poisson flow of demands with intensity 1λ .

The behaviour of the subscribed customers is as follows. If the server is idle at the time t of a sub-
scribed customer arrival (C(t)=0), the service of this customer starts. If C(t)=1, then the subscribed
customer waits till the current regular service is over and then is accepted immediately for service. We
assume that no more than one special customer is allowed to wait for the next service.  i.e. if at the
time t a special customer arrives and if C(t)=1 and one special customer is waiting, the system state
does not change. Finally, if the server is busy with a subscribed service, and a subscribed customer ar-
rives, the system state does not change, i.e. we assume that the rejected subscribed customers do not
join the orbit. The service duration of subscribers follows an arbitrary distribution, different from the
distribution of the regular customers. After the service any subscribed customer is free to produce
his/her usual demands that form a Poisson flow with intensity 2λ .

Results and future work

Introducing a supplementary variable z(t), equal to the elapsed service time, the state of the system
at time t can be described by the Markov process

X(t)={C(t),R(t),z(t)} where R(t) is the number of repeated regular customers at time t (orbit size).
Because of the finite state space of the Markov process X(t) the stationary regime exists, and we can
define the limiting probabilities (densities)
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, ( ) lim ( ( ) , ( ) , ( ) ),i j tp x dx P C t i R t j x z t x dx→∞= = = ≤ < + i=1,2,

, lim ( ( ) , ( ) ),i j tp P C t i R t j→∞= = = i=0,1,2, j=0,1,…,K.

In a general way we obtain the equations of statistical equilibrium and solve them using the discrete
transformations technique. In this presentation we derive recurrent formulas for computing the steady
state joint distribution of the server state and the orbit size, , ,( ),i j i jp x p , and present numerical exam-
ples illustrating the influence of the input system parameters on the main macro characteristics of the
system performance: server state distribution, mean orbit size, mean rate of generation of primary
regular customers, mean waiting time of a customer in the orbit and blocking probability that an ar-
riving primary regular customer will find the server busy and will be forced to join the orbit.

As a future work we plan to extend the investigation of this model by studying the busy period,
the waiting time process as well as the number of lost subscribed customers during the busy period.
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Retrial queueing model with two-way communication, unreliable server
and resume of interrupted call for cognitive radio networks*

Svetlana Paul, Tuan Phung-Duc
Tomsk State University, Tomsk, Russia

Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan

We are reviewing retrial queueing system M/GI/GI/1/1 with two-way communication [1, 2, 3], un-
reliable server [4] and afterservice of interrupted calls. For that system we have obtained probability
distribution of server states, condition for the existence of a stationary mode and probability distribu-
tion of the number of calls in the system.

Our model reflects a real situation in cognitive radio networks where secondary users utilize the li-
censed channel of primary users when the primary user is not present in the system. Secondary users
in cognitive networks correspond to incoming calls in our model. The service of incoming calls may
be interrupted by primary calls. This feature is reflected in the breakdown mechanism where the
                                                     
* The publication was financially supported by RFBR according to the research project No. 18-01-00277\18.
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breakdown event corresponds to the arrival of a primary user. The service time of primary user corre-
sponds to the time to repair in our model. The unique feature of this paper is we provide a buffer for
the interrupted secondary user so that its service is restarted upon the departure of the primary user.

Model description and problem definition

We consider a single server queueing model with two types of calls: incoming calls and outgoing
calls. Incoming calls arrive at the system according to a Poisson process with rate λ.

Incoming call enters the system and goes into service if the server is free.  The server then starts
service for a time duration, distributed with a function B1(x). If at the moment of entering system the
server is busy, the call instantly goes to the orbit and stays there for an exponentially distributed dura-
tion of time with a rate σ, after which the call retries to go into the server.

If the server is idle (empty) it starts making outgoing calls to the outside (not to the orbit) with rate
α, the service time of an outgoing call follows the distribution function B2(x).

We will be reviewing a system with unreliable server, which crashes with intensity γ and recovers
with intensity μ while servicing incoming calls. In a free state and while servicing outgoing calls the
server is reliable and unable to crash.

If while servicing an incoming call the server crashes, the incoming call stays at the server and as
soon as server recovers the call goes into afterservice. When the server is serving an incoming call or
the server is recovering, incoming calls enter the orbit.

We have obtained:
1. The condition for the existence of a stationary mode in the retrial queue described above.
2. Characteristic function and stationary probability distribution of the number of calls in the system.
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Comparing sampling methods through retrial queues
1Megdouda Ourbih-Tari, 2Kenza Tamiti,

3Abdelouhab Aloui and 4Khelidja Idjis
1Centre Universitaire Morsli Abdellah-Tipaza, Algeria

2,4Laboratoire de Mathématiques appliquées, FSE, Université de Bejaia, Algeria
3LIMed, FSE, Université de Bejaia, Algeria

Simulation methods including Monte Carlo (MC) methods are considered as approximation meth-
ods, they have known and are still experiencing rapid development due to the development of comput-
ers. Their applications can be found in various fields, such as queuing systems and other fields.
The Random Sampling (RS) method is well known and intensively used to represent the stochastic
behavior of random variables. RS, the so-called MC method is defined by several authors such as
(Dimov, 2008) and so on, but it is an inaccurate sampling procedure, so, the random behavior of sto-
chastic input variables are not well represented. Several sampling methods representing better than RS
the random behavior of stochastic input variables can be found in the literature such as Refined De-
scriptive Sampling (RDS) (Tari and Dahmani, 2006). RDS is proved to be more accurate than RS
method when applied to real problems for instance, (Tari and Dahmani, 2005a,b, Baghdali-Ourbih et
al., 2017). Several research on sampling methods has been conducted in the field of queueing simula-
tion. The main feature of RDS is that, in contrast to RS method, the produced estimates are each time,
the most efficient.

This research takes a closer look at the RDS method especially through its variance reduction and
seeks how RDS behaves when applied to M/G/1 retrial queues. This paper is concerned by the evalua-
tion of performance measures of such system under the strong condition by using both RS and RDS
for generating input samples to be used by the M/G/1 retrial model.

Mathematical model

An M/G/1 retrial system for which an analytical solution exists and can therefore serve as a basis
for comparing both RDS and RS sampling methods is considered for a variety of service time distri-
butions. Under the condition of ergodicity, the mean number of customers in the system and the mean
number of customers in the orbit are evatuated through simulation. These two performance measures
are selected for the comparison of both sampling methods because they are usually studied in existing
literature and have practical interest.

Conclusions

We have shown that the simulated retrial M/G/1 queues for a given time period and for different
service time distributions, that proper use of RDS through its getRDS generator reduces the variance
of the estimates of all considered output random variables parameters.
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Analysis of discrete time retrial queueing model
with changes in vacation times for energy saving in WSNs

S. Pavai Madheswari, S.A. Josephine, P. Suganthi
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We propose a discrete time retrial queueing model with customer impatience and possibility of
changing the vacation period. If an arriving customer finds the server idle, his service is started imme-
diately. On the other hand, if the server is busy, he decides either to join the pool of blocked customers
called orbit with probability θ  or decides to quit the system with complementary probability 1− θ .
Upon completion of a service, the server chooses to go on vacation with probability p or continues to
serve the next customer with complementary probability 1 p− . During a vacation period, changes in
vacation times are permitted based on requirements.

Our model finds its application in modeling a Wireless Sensor Networks (WSNs) to extend the
lifetime of the batteries using the possibility of making changes in the vacation period. This model is
well suited to discuss the energy saving in the batteries of each sensor node thus extending the lifetime
of the WSN. This is achieved by keeping the transmitter in off mode(vacation) when there are no data
packets to be sent to the sink node. If the transmitter in the node is busy or in the switched off mode
(vacation), the arriving packets may not wait in that sensor node but balk.

The time period the transmitter is in the off mode (vacation period) may be extended if no further
messages have arrived at the end of a vacation period or may be shortened and the transmitter changed
to on mode if any messages have arrived before the end of the vacation.

A detailed study of the system is performed. Using the probability generating function approach the
probability generating functions of the orbit size and system size are derived. The effect of the pa-
rameters on the performance measures are analytically derived and numerically validated.
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with servers subject to breakdowns and repairs
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We study a Markovian two-stage multiserver tandem queueing system in which the servers are sub-
ject to breakdowns and repairs. We formulate this retrial queueing system as a continuous-time level-
dependent quasi-birth-and–death (LDQBD) process. A sufficient condition for the ergodicity of the sys-
tem is studied. The joint steady-state probability distribution of the number of customers in the system
and the state of the server is obtained by employing the matrix analytical method. Besides, some impor-
tant and interesting performance measures of the system are discussed. A detailed algorithmic analysis is
presented in order to determine the distributions of the time needed to reach a certain level of congestion
in the orbit and the number of service completions during that time period. Finally, extensive numerical
results are carried out to gain various insights into the system performance measures.
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The aim of the present paper is to investigate a retrial queuing system M/M/1 with a finite number
of sources and two-way communication.

The first results on infinite source retrial queueing systems with two-way communication was pub-
lished by Falin [5] followed by some recent ones, see for example [1, 2, 3, 8, 9].

Finite-source retrial queueing systems with two-way communication has not been investigated in-
tensively, yet. To the best knowledge of the authors only the paper of Dragieva and Phung-Duc [4]
dealt with this problem. They investigated an M/M/1//N retrial model with exponentially distributed
retrial times where the primary and retrial outgoing call generation and service times are also expo-
nentially distributed.

In their Conclusion the authors mentioned studying waiting time process among others. Hence it
was our main motivation to investigate the distribution of the waiting and response time distribution of
primary incoming calls by using asymptotic methods similar to [6, 7, 10]. Assuming that the number
of sources N tends to infinity, it is proofed that the response/waiting time distribution of primary in-
coming customers in the system/orbit can be approximated by a generalized exponential distribution
with given parameters. In addition, the asymptotic average number of customers in the system and in
the orbit are obtained. The results are validated by the Little-formula.

Model description and notations

Let us consider a retrial queuing system of type M/M/1//N with two-way communication. The
number of sources is N and each of them can generate a primary request with rate / Nλ . A source
cannot generate a new call until the end of the successful service of this customer. If incoming (pri-
mary or retrial) customer finds the server idle, it enters into service immediately, in which the required
service time is exponentially distributed random variable with parameter 1μ . Otherwise, if the server
is busy, an arriving (primary or repeated) customer moves into the orbit. The retrial times of requests
are assumed to be exponentially distributed with rate / Nσ . We suppose that if the server is idle, it
generates an outgoing call in an exponentially distributed time with rate / Nα for outgoing call to the
orbit and with rate / Nβ  for primary outgoing calls. The service times of outgoing calls are assumed
to be exponentially distributed random variable with parameter 2μ . All random variables involved in
the model construction are assumed to be independent of each other.

Fig. 1. Retrial queuing system of type M/M/1//N with two-way communication

                                                     
* The work/publication of A. Nazarov is supported by grant RFBR (Russian Foundation for Basic Research), the Agreement

number 18_01_00277.
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Our main aim is to find the sojourn time distribution of the customers in the system and in the orbit,
respectively. The method of asymptotic analysis [10] is used in the condition of an unlimited growing
number of sources.

First, we will find the first order asymptotic mean normed number of customers in the orbit, the re-
sults of which we will apply later on to study the sojourn time distribution of the customer in the sys-
tem.

First order asymptotic for the number of customers in the orbit

Let Q(t) be the number of customers on the orbit at time t, C(t) be the server state at time t, that is

0,    if the server is idle,
( ) 1,    if the server is busy by an incoming call, 

2,    if the server is busy by an outgoing call.
C t

⎧⎪= ⎨
⎪⎩

Thus, we will investigate the Markov process {C(t),Q(t)}.
Let us define the stationary probabilities as follows:

( ) lim { ( ) , ( ) }k t
P n P C t k Q t n

→∞
= = = ,

then we have
Theorem 1. Let Q be the number of customers in the orbit then

{ } { }lim exp exp ,
N

QE iw iw
N→∞

= κ (1)

where value of parameter κ  is the positive solution of the equation

[ ]1 2 0(1 ) ( ) ( ) ( ) ( ) 0.R R Rλ − κ κ + κ − α + σ κ κ = (2)

Here the stationary distributions of probabilities ( )kR κ  of the service state k depends on κ and
can be obtained as follows

[ ] [ ]
1

0
1 2

1 1( ) 1 (1 ) (1 )R
−

⎧ ⎫
κ = + λ − κ + σκ + β − κ + ακ⎨ ⎬

μ μ⎩ ⎭
, (3)

[ ]1 0
1

1( ) (1 ) ( ),R Rκ = λ − κ + σκ κ
μ  

  [ ]2 0
2

1( ) (1 ) ( )R Rκ = β − κ + ακ κ
μ

.

Sojourn time distribution of the customer in the system

Let T be the total sojourn time of the tagged customer in the system and T(t) is the time length from
moment t until the end of the service of the tagged customer. The total sojourn time T is simply
expressed through the residual sojourn time T(t).

Let S(t) describe the server state at time t as follows
0,      server is free,
1,      server is busy by incoming (not tagged) customer,

( ) 2,      server is busy by outgoing (not tagged) customer,
3,      server is busy by incoming tagged customer,
4,      serv

S t =

er is busy by outgoing tagged customer.

⎧
⎪
⎪
⎨
⎪
⎪
⎩

Thus, we can state the following theorem
Theorem 2.  Let T be the total sojourn time of the customer in the system then

{ } ( )
( )

0
0 0

0
lim exp (1 ) .
N

RTiw R R
N R iw→∞

α + σ
= + −

α + σ −
E (4)
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Consequently, we have

{ } 0
0 0

0

( ) /
exp (1 ) 1 ,

( ) /
R N

iuT R R q q
R N iu iu

σ + α γ
≈ + − = − +

σ + α − γ −
E

which is the prelimit value, that is for fixed N.
Thus, the mean response time can be approximated by

 0

0

(1 )
.

( ) /
R
R N

−
σ + α

Since the service time of a primary incoming customer is bounded then the limiting distribution of
the normalized response time and the waiting time coincide. Similarly, the limiting distribution of the
normalized number of customers in the system and in the orbit are the same.

Hence the mean arrival rate to the system is (1 )λ − κ .
We will use the Little-formula to check our results, namely we have

0

0

(1 )
(1 )

( )
R

R
−

λ − κ = κ
σ + α

,

which is equivalent to equation (2) from which κ  was determined.

Conclusions and future work

In this paper a finite-source retrial queuing system of type M/M/1//N with two-way communication
was considered. The research has been performed by the method of asymptotic analysis under the
condition of unlimited growing number of sources. As the result of the analysis it was shown that the
limiting sojourn/waiting time of the customer in the system has a generalized exponential distribution
with given parameters. The authors plan to continue their research, among others modeling finite-
source retrial queuing systems with two-way communication for the case of generally distributed
service times.
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Performance analysis of an M/G/1 retrial queueing systems under LCFS-PR
discipline with general retrial and setup times
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This paper deals with the analysis of an M/G/1 retrial queueing systems with general retrial and
setup times. The customers are served under the preemptive resume priority last-come, first-service
(LCFS-PR) discipline and only the customer at the head of the orbit queue is allowed to access the
server. For such a system, the necessary and sufficient condition for the system to be stable is investi-
gated. Using the generating functions technique, the joint steady-stat distribution of the server state
and the number of customers in the orbit are obtained along with some interesting and important per-
formance measures. Besides, the general stochastic decomposition property is discussed. Finally, some
numerical examples to illustrate the effect of system parameters on several performance characteristics
are carried out.
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Consider the problem of a dynamic routing control retrial queue with a single server providing two
phases of service. Every customer must receive service in two phases before leaving the system. Upon
completion of the first phase, the server can either continue with the second phase for the same cus-
tomer or stop the current service sequence in the first stage. In the latter case, the customer is placed in
the retrial box, from where he is recalled for the second phase after a random length of time before
leaving the system. Using Markov decision theory, we prove that there exists an optimal policy that
minimizes the expected total discounted cost for the system. In the case of socially optimal routing
policies, we show that such a policy can be described by a switching curve based on the number of
customers in the system. We present a conjecture regarding the structure of this policy. Numerical re-
sults for the optimal threshold for different parameter values are obtained.
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This paper studies M/G/1 retrial queue with persistent and impatient customers having different
general service distribution. The server is subject to active and passive breakdowns. The considered
model takes into account two types of arbitrarily distributes maintenances: preventive for improving
system performances and random breakdowns, and corrective for restoring the service when a failure
occurs. The explicit expressions of the probability generating functions of distribution of server state
and orbit size are well known from early study. We obtain asymptotic behavior of the random variable
representing the number of customers in the retrial group under some extreme conditions: heavy traf-
fic, low retrials, instantaneous connection of impatient customers. Some numerical illustrations are
also given.

The mathematical model

We consider an M/G/1 retrial queue with unreliable server and two types of primary calls: persis-
tent and impatient. These calls arrive according to independent Poisson processes with rate 0λ > and

0γ > respectively. There is no queue in the classical sense. If an arriving primary call (persistent or
impatient) finds the server available and free, it immediately occupies the server and leaves the system
after service completion. If an arriving persistent call finds the server blocked it becomes a source of
secondary call and returns later to try again until it finds the server free and available; the collection of
all secondary calls is called orbit.  If an arriving impatient call finds the service blocked, it leaves the
system forever. Any customer accepted for service upon arrival or on retrial leaves the system forever
after service completion. We assume that each customer in orbit comes back, independently of others,
to the server after an exponential amount time with parameter 0v > . The service times of the persis-
tent customers are independent with common probability distribution function ( )H x , Laplace-Stieltjes
transform ( )h s  and first order moment h1 and h2. The service times of the impatient customers are in-
dependent with common probability distribution function F(x), Laplace-Stieljes transform ( )f s and
first order moments f1 and f2. The server is subject to active and passive breakdowns. The failures oc-
cur according to Poisson processes with rates 1 0θ > and 2 0θ > when the server is busy and idle re-
spectively. A persistent customer whose service is interrupted joins the retrial group while an impa-
tient one leaves the system. Two types of maintenance are performed: preventive and corrective. The
preventive maintenance is initiated from time to time in order to improve system performance ac-
cording to a Poisson process with rate δ > 0. Its duration is a random variable with probability distri-
bution function G(x), Laplace-Stieltjes transform g(s) and first two moment g1 , g2 >0. If a preventive
action occurs when a service is in course, then it is postponed to an ulterior date. The corrective main-
tenance (also called repair) is launched when the server fails. Its duration is a random variable with
probability distribution function R1(x), Laplace-Stieltjes transform r1(s) and first order moment r11 and
r12, given that the breakdown occurs in a busy period and with probability distribution function R0(x),
Laplace-Stieltjes transform r0(s) and first two moment r0 and r02, given that the breakdown occurs in an
idle period. All the considered variables are assumed to be mutually independent and all moments are
assumed to be finite.

Result 1. Approximation under heavy traffic (p→1-)
As p→1-0, the scaling random variable (1–p) follows a Gamma distribution, i.e.

2
1 1 01 1 1 1

2 2
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Result 2. Approximation under low rate of retrials (v→0)
As v→0, the random variable R follows a Gaussian distribution with mean
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Result 3. Instantaneous connection to impatient customers (γ→∞)
As γ→∞, the random variable R follows a Gaussian distribution with mean

1
2 (1 )

a
v p
λγω

=
−

and variance 
3 2

1 2 2 1
2 2

[ 2 ](1 )
2(1 )

v p
b

p
λ ω + λ ω + λω −

=
−

.

REFERENCES

 1. Aissani A., Taleb S., and Hamadouche D. An unreliable retrial queue with impatience and preventive maintenance // Pub.
Irma Lille. 2013. V. 72. No. 4.

 2. Medvedev G.A. Random characteristics in LAN with random access and asymmetric load // Automatic Control and Com-
puter Science. 1994. V. 28. P. 34−41.

 3. Gnedenko B.V. and Kovalenko I.N. Introduction to Queueing Theory. 2nd edition. Boston: Birkhauser, 1989.
 4. Kleinrock L. Queueing Systems: Computer Applications Wiley. 1st edition. New York: Wiley (English), 1975; 2nd edi-
tion. Moscow: Machinostroinie (In Russian), 1979.

Ferhat  Lounis  is a doctoral student at University of Mouloud Mammeri Tizi-Ouzou (UM-
MTO), Department of mathematics, Algeria. He received master degree in Operational Research
from UMMTO (2014). His field of interested is Reliability, Queueing Systems and other Stochastic
Models of Operations Research and Computer Science.

E-mail: ferhat50@hotmail.fr

Djamel  Hamadouche  is Professor at University Mouloud Mammeri of Tizi-Ouzou (UM-
MTO), Department of Mathematics, Algeria. He’s graduated in Mathematics from USTHB (1991)
and Lille (1993) Universities. He received Ph.D. Degree in Mathematics from Lille University,
France (1997). His field of interested with his students and colleagues covers Limit theorems in ab-
stract spaces (Hölderian), Stochastic processes and their applications, particularly in Operations
Research, Queueing theory, Statistics and Computer Sciences.

Amar Aissani  is Professor at University of Science & Technology Houari Boumediene
(USTHB), Department of Computer Sciences, Bab-Ed-Douar, Algiers. He’s graduated in Applied
Mathematics from Constantine (1977) and Minsk (1980) Universities. He received Ph.D. Degree in
Physico-mathematical Sciences from Vilnius University (1983) after a dissertation thesis prepared
at Belarus State University under the supervision of Professor G. A. Medvediev. After a National
service at Military Polytechnical School (EMP) (1987−1988), he took parts (1990−1998) to the
foundation of the mathematic department (University of Blida 1). His field of interested with his
students and colleagues covers Reliability, Queueing Systems and other Stochastic Models of Op-
erations Research and Computer Science.

E-mail: amraissani@yahoo.fr



42

Cost optimization and performance analysis of double orbit retrial queueing model
with unreliable server and balking

Sudeep Singh Sanga, Madhu Jain
Indian Institute of Technology Roorkee, India 247 667

The present study is concerned with the performance analysis of the unreliable single server retrial
queueing system. The concept of customers’ balking behavior and provision of double orbits are in-
corporated to depict the realistic scenarios of many not wish to join the system for the service and
leave the system without getting served. On joining the system, if the customers see the server is busy
then they are directed to accommodate on one of the two retrial orbits, i.e., ordinary orbit or executive
orbit; the high paying customer would like to join the executive orbit. Chapman-Kolmogorov equa-
tions are framed and solved by analytical method by using probability generating functions of the
queue size distributions. Several performance indices are established explicitly. Furthermore, various
analytical results are established which are further compared by using soft computing artificial neuro
fuzzy interface system (ANFIS) approach by taking Gaussian membership function for fuzzy input pa-
rameters. A numerical illustration is provided to figure out the effects of the system parameters on
the several performance indices. The cost function is also constructed and minimized by using quasi-
Newton method to determine the optimal service rate.

Sudeep Singh Sanga is a Senior Research Scholar at the Department of Mathematics, In-
dian Institute of Technology Roorkee, Uttarakhand, India. He received his M.Sc. Degree in In-
dustrial Mathematics and Informatics from Indian Institute of Technology Roorkee, India. There
are 1 research publication in refereed International Journal and 3 books chapters to his credit. He
has attended 4 International Conferences and 9 academic workshops. His area of research interest
includes Queueing Theory, Optimal Control Policy, Operations Research, Fuzzy Logic and Soft
Computing.
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Dynamic control of a retrial queueing system with abandonments:
manpower planning in a call center

Rein Nobel
Department of Econometrics and Operations Research, Vrije Universiteit Amsterdam

In call centers dynamic manpower planning is an important issue, because there is a trade-off be-
tween the cost of keeping many idle servers active, i.e. available to start the service of an incoming
call, and the cost of long waiting times for the callers before being serves due to a lack of available
[free] servers. On the one hand it is a waste of resources when too many servers stay idle and active
for a long time, and on the other hand it is a nuisance for the customers, and so indirectly also for
the call center when too many callers have to wait very long before they find a free server. In call
centers it is common that callers who find all servers busy upon arrival do not wait in a queue, but in-
stead temporarily leave the system and try to approach the center anew after some random time. But if
they have to wait too long before finding a free server they will give up, and abandon the system for-
ever, which is also a loss for the call center. So, this setup of a call center asks for the analysis of a
queuing model where customers who find no free server upon their first arrival retry to enter the sys-
tem repeatedly until they find a free server, and will abandon the system, when after a series of unsuc-
cessful retrials their patience time has expired. It will be clear that/ due to the stochastic character of
the arrival stream of the callers and the service time, having a constant number of servers active [idle
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or busy] might not be optimal from a cost perspective: some form of dynamic manpower planning is
required to reduce the total operational cost for the call center.

To get an insight into an optimal manpower planning policy in this environment we consider
a multi-server retrial queueing model where new customers [callers] arrive according to a Poisson pro-
cess and customers will be non-persistent, i.e. they will abandon the system after their patience time
has expired. The number of active servers is controllable at arrival epochs and at service completion
epochs. Servers who are not active are sleeping [turned off], and they do not incur any cost. An active
server is always idle or busy. Keeping an idle server active for incoming calls, i.e. newly arriving
customers, requires a standby cost per unit time. When upon arrival of a customer at least one of the
active servers is idle, the newly arrived customer goes into service immediately. Otherwise the deci-
sion must be made to send the customer into orbit, a virtual waiting area from which the customers try
to enter the system anew after some random time, or to activate a sleeping server for immediately
service of the arrived customer into orbit, a virtual waiting area from which a set-up cost. A customer
in orbit tries to renter the system some random time later, but he will abandon the orbit forever once
his patience time has expired. Retrial times and patience times follow an exponential distribution. For
customers in orbit linear holding costs are incurred per unit time and every customer who abandons
the orbit incurs a penalty cost for the system. To reduce standby costs, the system has the option to
deactivate an idle server, i.e. send him into sleep, at service completion epochs. The service time
of the customers are independent and follow a Coxian-2 distribution. This choice enables to study
the sensitivity of the variance of the service times for the activating/deactivating policies. The problem
is to find the optimal policy for activating new servers at arrival epochs and deactivating idle servers at
service completion epochs which guarantees a minimal long-run average cost per unit time.

Using Markov decision theory this policy can be calculated in principle, but due to the large state
space showing up in the mathematical description of the system a straightforward application of well-
known methods like policy-iteration algorithm is hampered. By introducing so-called fictitious deci-
sion epochs it is shown how the problem of a large state space can be circumvented. Numerical results
will illustrate that the optimal policies are characterized by so called threshold policies. This structural
phenomenon can greatly facilitate any practical implementation.
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A retrial queueing system with a batch Markovian arrival process
and non-exponential inter-retrial times

Valentina Klimenok, Alexander Dudin
Belarusian State University, Minsk, Belarus

Retrial queueing systems describe the operation of many switching telephone systems, modern
telecommunication networks, contact centers, etc.  Such queues have been extensively studied under
a variety of scenarios for single and multiple server cases, for references see, e.g., surveys [1, 2] and
books [3, 4]. In the most of research the systems with a stationary Poisson input and exponential dis-
tributionof inter-retrial times are analyzed.

A small number of publications deals with M/G/1 and M/M/1 retrial queue with non-exponential
inter-retrial time distribution. But all these publications consider so-called constant retrial policy.
However, in most real-life systems where the effect of retrials is observed, systems operate under the
classical retrial policy, where each orbital customer generates a flow of repeated attempts independ-
ently of the rest of the customers in the orbit. At the same time, as far as we know, retrial queues with
classical retrial policy and non-exponential inter-retrial time distribution were considered only in arti-
cles [5, 6, 7].

 In [5], the author developed an approximate method for calculating the steady state distribution of
M/G/1 retrial queue with inter-retrial time that are mixtures of Erlangs. The authors of [6, 7] assume
that the elapsed retrial time for any orbital customer is a random variable independent of other orbital
customer's elapsed retrial times. Such an assumption greatly simplifies the mathematical analysis of
the system.

In the present paper, we consider BMAP/PH/N retrial queue with alternating distribution of inter-
retrial times.  We assume that inter-retrial times have PH distribution if the number of customers in
the orbit does not exceed some large threshold K and have exponential distribution otherwise. We
suppose that, under a large value of K our model can be considered as a good approximation of
the BMAP/PHN1 retrial queue with PH distribution of inter-retrial times.  This supposition is based on
our internal convictions which, in turn, are based on the theorems by A. Ya. Khinchin, G.A. Ososkov,
B.I. Grigelionis about superpositions of the large number of small flows. Our model allows to some
extent take into account the realistic nature of retrial process and, at the same time, to avoid a large in-
crease in the dimensionality of the state space of this process.

Customers arrive at the system according a Batch Markovian Arrival Process (BMAP) which mod-
els well the correlated bursty traffic in modern telecommunication networks. Customers which find
the servers busy enter the orbit of infinite size and try their luck after some random time. We suppose
that inter-retrial times have phase-type distribution if the number of customers in the orbit does not ex-
ceed some threshold and have exponential distribution otherwise. We derive the condition for stable
operation of the system, calculate the stationary distribution and the main performance measures of
the system.
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An M/G/1 queueing system with differentiated vacation

Amar Aissani
University of Science and Technology Houari Boumediene (USTHB),

BP 32 El Alia, Bab-Ez-Zouar, Algiers 16 111, Algeria

Mathematical formulation

We consider a model of M/G/1 type queue with differentiating (or adaptive) vacation. Customers
arrive at the system according a Poisson process with rate λ  and request for service which takes
a random duration S  with general probability distribution ( ) ( )H x P S x= < , Laplace-Stieltjes trans-
form ( )h s  and first two moments 1h  and 2h .

The server starts a type I vacation when the server becomes idle. The length of this vacation fol-
lows an exponential distribution with mean 

1
1
γ . On returning from this vacation, if the server is still

idle, it takes a type II vacation whose duration follows an exponential distribution with mean 
2

1
γ .

Type II vacations are repeated as long the system is empty upon the completion of a vacation. On re-
turning from either type I or II vacation, if there are some customers in the system, the server immedi-
ately start servicing customers until the system is empty again. All the considered random variables
are assumed to be mutually independent and all moments are assumed to be finite. Such a model has
been related recently with power-saving mode where the server is turned off in order to save energy in
communication and computer systems [1−3]. Such a model has been analyzed using difference equa-
tions or in discrete time and revisited in [4] using generating function approach which conduct to more
simple formulas, but in the Markovian context. In this paper we consider one of these models in a non-
Markovian framework when the service time distribution is arbitrary distributed by using generating
and Laplace transforms.

Joint probability distribution of server state and number
of customers in the queue

Let ( )S t  denote the server state

0,  the  server  is  busy  by  the  sevice  of   a  customer,
1,   the  server  is  on  vacation  of   type  I,
2, the  server  is  on  vacation  of   type  II.

( )
 

S t
⎧⎪= ⎨
⎪⎩

We introduce also a continuous random variable ( )tξ on +\ and which represents the residual
service time at time t , if  ( ) 0S t = .

Let ( )N t  be the number of customers in the system which is not Markovian. However, the sto-
chastic process { }( ), ( )S t tξ is now a Markov process defined on the sate space

{ } { } { }(0, ) : (1, ) : (2, ) : .j j N j j j j+ + +∈ ∈ ∈ ⊗∪ ] ∪ ] \

Let

{ }( ) lim ( ) , ( ) , 1,2,i t
P m P S t i N t m i m +

→∞
= = = = ∈]

and

{ }( , ) lim ( ) , ( ) , ( ) , 1,2, ,i t
P m x P S t i N t m t x i m x+ +

→∞
= = = ξ < = ∈ ∈] \

the steady-state probabilities of system state.
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These probabilities are solution of a system of partial differential equations in a discrete variable
m +∈] and a continuous one x +∈\ . This system is solved using Fourier transforms: Generating
function for the discrete variable and Laplace function for the continuous one.

Using some properties of these transforms and after some algebraic calculations we obtain explicit
expressions for the generating functions of the server state and number of customers in the queue and
the generating function of the unconditional distribution of the number of customers in the queue. This
yields all the required moments and some interesting optimal problems for practical purposes.

Remark 1. As noted in reference [3], if 2γ →∞ , the system converges to the M/G/1 queue with
single vacation.

Remark 2. Following the work [3] we conjecture that we can exhibit a stochastic decomposition
property for the number of customers in our M/G/1 queue

1 2( ) ( ) ( )FIFO VACATIONE N E N E N += + .

The first term is the number of customers in an M/G/1 FIFO-queue while the second term corre-
sponds to the number of customers that arrive during the remaining time of vacations of type I or II.
According to this remark, the computation of all performance measures will be simpler.

Remark 3. According to the distributional Little's law we can compute the Laplace – Stieltjes trans-
form of the sojourn time distribution using formula

( ) 1 sw s Q⎛ ⎞= −⎜ ⎟λ⎝ ⎠

and all the desired moments.

Conclusions

In this paper, we have considered a queueing model with differentiated vacation in the case of ar-
bitrary distributed service time. It will be interesting to extend this model to general vacation time dis-
tributions for which the system equation is more complex. Some attention can be paid also to the other
variants considered in [4].
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