On the Impact of Network Protocols and Architectures on Network Performance

Michele Pagano

Dept. of Information Engineering, University of Pisa, Italy michele.pagano@unipi.it

ITMM 2022 25–29 October 2022

Network Protocols and Performance

ITMM 2022 1/48

Overview

Network Performance

Traffic Modelling

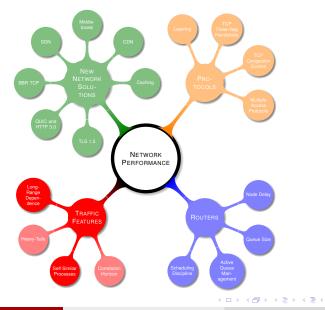
- Effect of the Protocols
- 5 New Network Solutions

Conclusions

Quality of Service (QoS)

3/48

Network Performance: the Big Picture

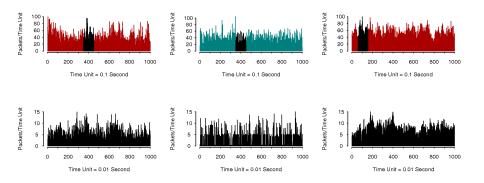


Michele Pagano

Network Protocols and Performance

< ■> ■ つへの ITMM 2022 4/48

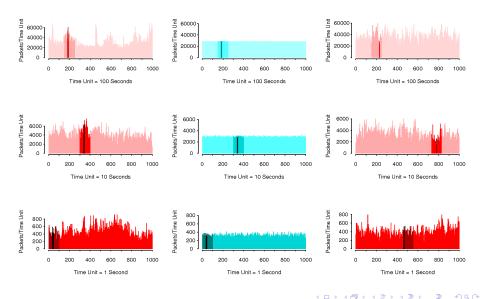
Traffic Features



Michele Pagano

Network Protocols and Performance

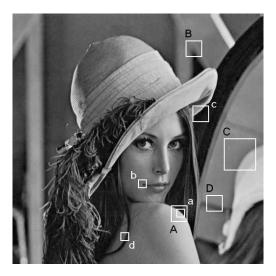
< ■> ■ つへの ITMM 2022 5/48


Traffic Self–Similarity

M. S. Taqqu, W. Willinger, R. Sherman *Proof of a fundamental result in self-similar traffic modeling*, Computer communication review, 1997

ITMM 2022 6/48

Traffic Self–Similarity


Michele Pagano

Network Protocols and Performance

ITMM 2022 7/48

Fractals Everywhere!

イロト イヨト イヨト イヨト

Network Protocols and Performance

ITMM 2022 8/48

Intuitive idea

• A dilated portion of the sample path of a self-similar process cannot be (statistically) distinguished from the whole

Self-similarity for continuous time processes

- Let $(Y_t)_t$ be a continuous time process ($t \in \mathbb{R}$)
- $(Y_t)_t$ is self-similar with self-similarity parameter H if and only if

 $c^{-H}Y_{ct} \stackrel{(d)}{=} Y_t \qquad \forall \, c > 0$

i.e., if for any $k \geq 1$, for any $t_1, t_2, \ldots, t_k \in \mathbb{R}$ and for any c > 0

$$(Y_{ct_1}, Y_{ct_2}, \dots, Y_{ct_k})$$
 and $(c^H Y_{t_1}, c^H Y_{t_2}, \dots, c^H Y_{t_k})$

have the same distribution

Michele Pagano

ITMM 2022 9/48

Properties of self-similar processes

• If $c^{-H}Y_{ct} \stackrel{(d)}{=} Y_t$ with $H \neq 0 \Rightarrow (Y_t)_t$ is not stationary

- Indeed, stationarity requires that $Y_{ct} \stackrel{(d)}{=} Y_t$
- For the purpose of modelling time series that *look stationary*, it is possible to consider the stationary increments of a self-similar process: X_t = Y_t Y_{t-1}
- Let Y_t be a self–similar process with
 - *H* > 0
 - $\mathbb{E}Y_t = 0$
 - $Y_0 = 0$ with probability 1

 \Rightarrow By definition of self–similarity, its covariance function is

$$r_Y(t,s) = \frac{\sigma^2}{2} \Big[|t|^{2H} - |t-s|^{2H} + |s|^{2H} \Big]$$

where
$$\sigma^2 = \mathbb{E}\left[\left(Y_t - Y_{t-1}\right)^2\right]$$

Stationary increments of a self-similar process

• The increment process $X_n = Y_n - Y_{n-1}$ is a second order (discrete time) stationary process

Aggregated process

$$X \stackrel{(d)}{=} m^{1-H} X^{(m)} \qquad \forall \, m \in \mathbb{N}$$

where

$$X_k^{(n)} = \frac{1}{n} \sum_{i=(k-1)n+1}^{kn} X_i$$

Autocorrelation function of X_n

$$\rho(k) \stackrel{\Delta}{=} \frac{r(k)}{r(0)} = \frac{1}{2} \left[|k+1|^{2H} - 2|k|^{2H} + |k-1|^{2H} \right]$$

 \Rightarrow If H = 1/2, the increments are uncorrelated: $\rho(k) = \delta_0$

Network Protocols and Performance

ITMM 2022 11/48

Asymptotic properties of X_n (for $H \neq 1/2$)

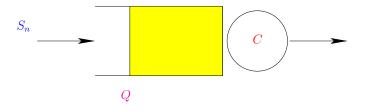
$$\lim_{k \to \infty} \frac{\rho(k)}{k^{2H-2}} = H(2H-1)$$

 $\rho(k)\ \sim k^{-\alpha} \quad {\rm as}\ \ k \to \infty \quad {\rm where}\ \alpha = 2 - 2 H$

Short Range Dependence (SRD)

• If $0 < H < 1/2 \Rightarrow X_n$ has SRD (actually $\sum \rho_k = 0$)

Long Range Dependence (LRD)


• If 1/2 < H < 1, then $0 < \alpha < 1 \implies X_n$ has LRD

$$\sum_k |
ho(k)| = \infty$$
 and $\operatorname{Var} X^{(n)} \sim n^{-lpha}$

• If $H = 1 \Rightarrow \rho(k) = 1 \quad \forall k$

• If $H > 1 \quad \Rightarrow \quad \rho(k)$ diverges

Steady-state overflow probability

- Single server queue in discrete time
- Deterministic service rate C
- Cumulative arrival process $S_n = \sum_{k=0} A_k$
- Limiting cumulant generating function $\Lambda(\theta)$
- Infinite buffer
- Lindley's recursion: $Q_n = (Q_{n-1} + A_n C)^+$

Overflow probability

SRD traffic

$$\mathbb{P}(Q > b) \approx e^{-\delta b}$$

Effective Bandwidth Approximation

$$\delta = \inf_{\tau > 0} \tau \Lambda^* (C + \frac{1}{\tau})$$

$$\Lambda(\theta) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} e^{\theta S_n}$$

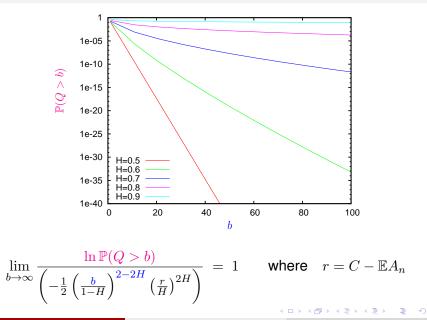
LRD traffic

$$\mathbb{P}(Q > b) \approx e^{-\delta b^{2-2H}}$$

$$\delta = \inf_{\tau > 0} \tau^{2-2H} \Lambda^* (C + \frac{1}{\tau})$$

$$\Lambda(\theta) = \lim_{n \to \infty} \frac{1}{a(n)} \log \mathbb{E}e^{\frac{\nu_n}{n}\theta S_n}$$
$$\nu_n = n^2 / \operatorname{Var}[S_n] = n^{2(1-H)}$$

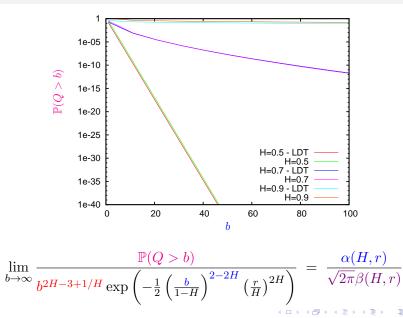
Fenchel-Legendre transform


$$\Lambda^*(x) \stackrel{\Delta}{=} \sup_{\theta \in \mathbb{R}} \left(x\theta - \Lambda(\theta) \right)$$

Michele Pagano

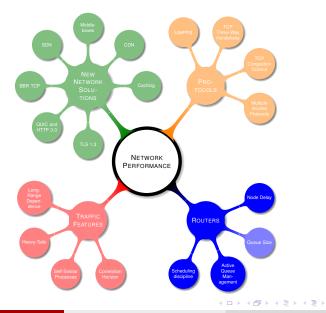
Network Protocols and Performance

< ≣> ≣ •) ९ (ITMM 2022 14/48


Fractional Brownian traffic – LDT asymptotics

Network Protocols and Performance

ITMM 2022 15/48


Fractional Brownian traffic – More precise results

Network Protocols and Performance

ITMM 2022 16/48

Routers

Michele Pagano

Network Protocols and Performance

▲ 王 → 王 · ク < C ITMM 2022 17/48

Scheduler

- A key component for QoS enabling networks
- Selects which next packet to transmit, and when, on the basis of some expected performance
- Different scheduling algorithms have been devised, which exhibit different fairness and latency properties at different worst-case per-packet complexity

Scheduling Algorithms

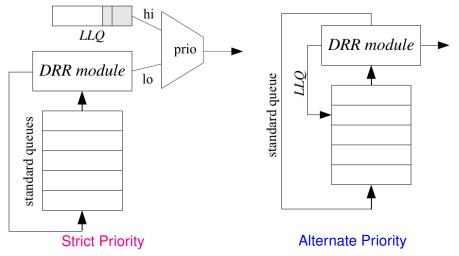
- WFQ (Weighted Fair Queueing) or PGPS (Packetized GPS)
- WF²Q (Worst-case Fair Weighted Fair Queueing)
- SCFQ (Self Clocked Fair Queueing)
- WRR (Weighted Round Robin)
- DRR (Deficit Round Robin)
- MDRR (Modified Deficit Round Robin)

Deficit Round Robin

• Achieves O(1) per–packet complexity

• Each queue *i* is characterized by

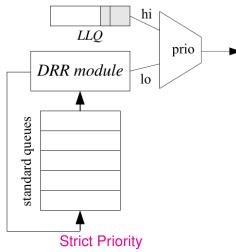
- A quantum of \u03c6_i bits: the quantity of packets that queue i should ideally transmit during a round
- A deficit variable Δ_i
- A backlogged queue is allowed to transmit a burst of packets of an overall length not exceeding $\phi_i + \Delta_i$
- The deficit variable Δ_i is managed as follows
 - Reset to zero when the queue is not backlogged
 - Increased by ϕ_i when the queue is selected for service
 - Decreased by the packet length when a packet is transmitted
- The minimum guaranteed rate of queue *i* is


$$R_i = \frac{\phi_i}{\sum_{j=1}^N \phi_j} C$$

where C is the link capacity

ITMM 2022 19/48

C-MDRR (Cisco 12000 routers)


Low Latency Queue

ITMM 2022 20/48

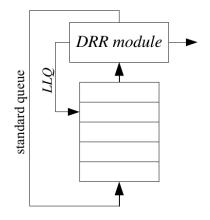
C-MDRR (Cisco 12000 routers)

Low Latency Queue

Strict priority mode

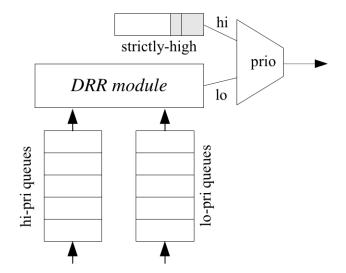
- The LLQ is always serviced in exhaustive, non preemptive priority mode
- The other queues are serviced cyclically, as in DRR, whenever the LLQ is empty
- A standard queue can have its service turn interrupted by the arrival of a packet in the LLQ

A b


C-MDRR (Cisco 12000 routers)

Low Latency Queue

Alternate priority mode


- The LLQ is assigned a quantum
- Whenever non empty, the LLQ is serviced for its whole quantum every second service turn
- If N standard queues (SQ₁, ..., SQ_N) are defined, and all queues (including the LLQ) are backlogged, the service order in a round is: LLQ, SQ₁, LLQ, SQ₂, ..., LLQ, SQ_N

Alternate Priority

ITMM 2022 20/48

J-MDRR (Juniper M–Series)

ITMM 2022 21/48

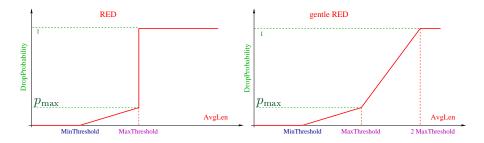
< A

J-MDRR (Juniper M–Series)

- A queue can have a low, high or strictly-high priority
- A strictly-high priority queue is serviced whenever it is non empty, like the LLQ in strict priority mode in C-MDRR
- Both high and low priority queues are serviced for a quantum on each round, and they carry on their deficit to the subsequent round if they are still backlogged
- In a round, the active list of high-priority queues is serviced first, until either it is empty or all high-priority queues have been serviced for their quantum
- Low-priority queues are serviced next
- Unlike C-MDRR, low and high priority queues transmit one packet at a time
- A queue can be serviced more than once per round

< ロ > < 同 > < 回 > < 回 >

Random Early Detection (RED)


- Router-centric congestion avoidance approach
- Early Drop: rather than wait for queue to become full, drop each arriving packet with some drop probability whenever the queue length exceeds some drop level ⇒ Active queue management
- Notification is implicit: just drop the packet (TCP will timeout)
- ECN-RED: notification could make explicit by marking the packet (ECN – Explicit Congestion Notification)

The decision is based on the *average queue length*

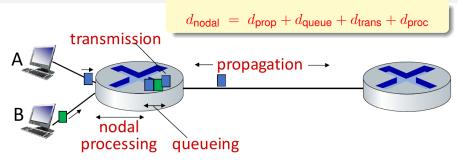
AvgLen = (1 - w) AvgLen + w SampleLen 0 < w < 1

- Weighted running average
- SampleLen is the queue length each time a packet arrives

RED Drop Probability curve

Dropping mechanism based on *two queue length thresholds*

if (AvgLen < MinThreshold) then enqueue the packet


if (MinThreshold < AvgLen < MaxThreshold) then

calculate probability P drop arriving packet with probability P

if (MaxThreshold < AvgLen) then drop arriving packet

Network Protocols and Performance

Nodal delay

Processing delay *d*_{proc}

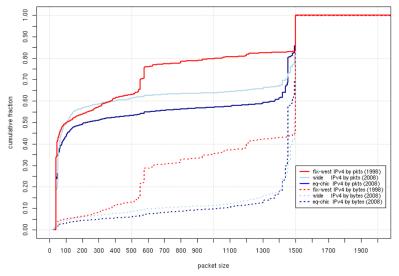
- The time required to examine the packet's header and determine where to direct the packet
- It can also include the time needed to check for bit-level errors
- In high-speed routers, typically on the order of µs or less

• • • • • • • • • • • •

Nodal delay

Queueing delay dqueue

- It is the delay between the time a packet is assigned to a queue for transmission and the time it starts being transmitted
- The queueing delays can vary significantly from packet to packet and can be on the order of μs to ms in practice

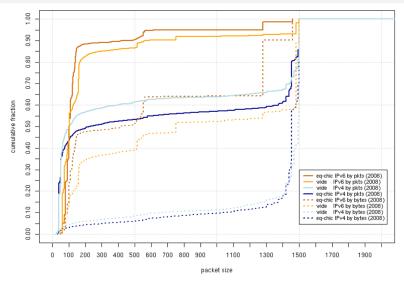

Transmission delay d_{trans}

- It is the delay between the times that the first and the last bits of the packet are transmitted
- Transmission delays are typically on the order of µs to ms (hundreds of ms in case of low-speed dial-up modem links)

$$d_{\text{trans}} = L/R$$

where L is the packet length and R is the link transmission rate

Cumulative IPv4 packet size distribution


CAIDA - Cooperative Association for Internet Data Analysis

Michele Pagano

Network Protocols and Performance

ITMM 2022 26/48

Cumulative IPv4 and IPv6 packet size distribution

CAIDA - Cooperative Association for Internet Data Analysis

Michele Pagano

Network Protocols and Performance

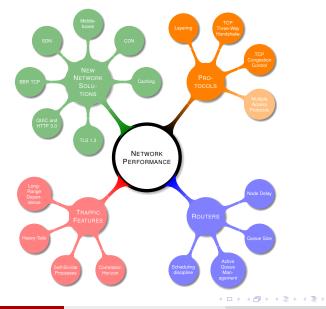
ITMM 2022 27/48

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Nodal delay

Propagation delay d_{prop}

- It is the delay between the time a bit is transmitted at the head node of the link and the time it is received at the tail node
- The bits propagate at the propagation speed s of the link, which depends on the physical medium and is in the range of $2 \cdot 10^8 \ m/s \ \ 3 \cdot 10^8 \ m/s$
- d_{prop} can range from a couple of μs (two routers on the same university campus) to hundreds of ms (two routers interconnected by a geostationary satellite link)


$$d_{\text{prop}} = d/s$$

where d is the distance between the two routers

$$d_{nodal} = d_{prop} + d_{queue} + d_{trans} + d_{proc}$$

ITMM 2022 28/48

Effect of the Protocols

Michele Pagano

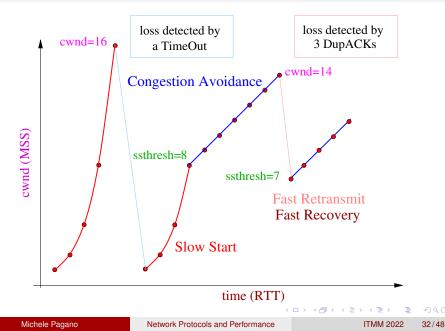
Network Protocols and Performance

 ITMM 2022
 29/48

Transmission Control Protocol (TCP)

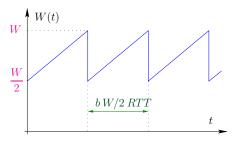
- TCP is based on concepts first described in V.Cerf, R. Kahn, "A Protocol for Packet Network Intercommunication", IEEE TCOM, May 1974"
- In IETF world originally defined in RFC 793 (September 1981)

Key features


- Full duplex (piggyback of ACKs)
- Connection-oriented (Establishment and teardown of the connections)
- Multiplexing/Demultiplexing (through Source and Destination Port numbers)
- Reliability (through Sequence Numbers, Checksum, ACKs and timers)
- Flow Control (through Advertized Window)
- Congestion Control, making TCP sensitive to network conditions

TCP Congestion Control

- TCP congestion control (CC) mechanisms seek to
 - Achieve high utilization
 - Control congestion
 - Share bandwidth
- TCP CC introduced in the late 1980s by Van Jacobson
 - In October 1986, the Internet had the first of what became a series of congestion collapses (sudden factor-of-thousand drop in bandwidth)
 - window-based mechanism: TCP maintains a state variable cwnd, used by the source to limit how much data it is allowed to have in transit at a given time
 - Slow Start, Congestion Avoidance and Fast Retransmit
 - round-trip variance estimation
- Differentiation between major and minor congestion events
 - Introduction of Fast Recovery (april 1990)


・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Classical TCP Congestion Control (TCP Reno)

Simple deterministic model of TCP Reno

- TCP source running over a lossy path with sufficient bandwidth and sufficiently low competing traffic
- Assume that the link introduces one drop after the successful delivery of 1/p consecutive packets
- No ACK loss

- Periodic evolution of cwnd
 - W: maximum value of cwnd reached at the equilibrium
 - cwnd is backed off to W/2 after each loss, starting a new cycle

Simple deterministic model – Main results

Mean throughput

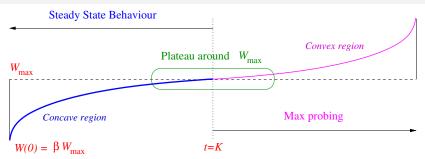
$$\mathcal{B} = \frac{A_{\text{cycle}}}{T_{\text{cycle}}} = \frac{MSS \cdot b_{\overline{8}}^3 W^2}{RTT \cdot \frac{b}{2}W} = \sqrt{\frac{3}{2b}} \cdot \frac{MSS}{RTT\sqrt{p}}$$

- The throughput is proportional to the packet size
- The throughput is inversely proportional to RTT (unfair behavior) and to the square root of loss probability
- Slightly different proportionality constant in other models

Limitations

- The timeout mechanisms is not taken into account
- Optimistic estimate of the bandwidth of a TCP connection
- Accurate in the range of small loss probabilities
- Not suitable to determine performance of TCP over slow-speed line (few packets in transit)

 ITMM 2022
 34/48

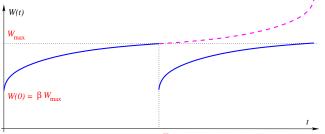

TCP Variants

Long-distance (Long) and High-speed (Fat) Networks

- Conservative behavior of TCP Reno in adjusting its cwnd
- Congestion control parameters depend on current cwnd
- Queueing delay as a secondary congestion signal
- Impact of multiple losses ⇒ Use of SACK
- Different mechanisms are necessary for congestion control in heterogeneous networks

High BDP	Wireless	Satellite	Inter-DC	Intra-DC	;
BIC H-TCP Compound CUBIC FAST TCP	Westwood Vegas Veno	Hybla STAR	Illinois SABUL	ICTCP DCTCP	
				erser e	1240
Michele Pagano	Network	k Protocols and Performan	ce	ITMM 2022	35/48

TCP CUBIC



Window groth after a congestion event

- CUBIC registers the window size W_{max}
- It performs a multiplicative decrease of congestion window by a factor of β (suggested value: $\beta = 0.7$)
- It starts to increase the window using the concave profile
- The concave growth continues until W_{max}
- After that, the convex window growth begins

Simple deterministic model of TCP CUBIC

- The number of packets between two successive losses is 1/p
- CUBIC always operates with the concave window profile
- cwnd has a periodic evolution

Average cwnd size

$$\mathbb{E}W_{\text{CUBIC}} = \sqrt[4]{\frac{C(3+\beta)}{4(1-\beta)}} \left(\frac{RTT}{p}\right)^3$$

Michele Pagano

Network Protocols and Performance

Opening a web connection ...

File Edit View Go Gapture Analyze Statistics Telephony Wireless Tools Help

-		N 🛛 🖌 🔶 🤟							
1 6	addr == 213.230.96.104	&& tcp.flags.syn== 1) (udp	.port==60854)						
No.	Time	Source	Src port	Destination	Dest port	Protocol	Length	Info	
	44 7.849285898	192.168.1.3	60854	1.1.1.1	53	DNS	8	2 Standard o	uery 0x9492
£	45 8.204002043			192.168.1.3					
	46 8.204891019	192.168.1.3	52338	213.230.96.104	443	TCP	7	4 52338 → 44	3 [SYN] Seq

46 8.204891019 192.168.1.3	52338 213.230.96.104	443 TCP	74 52338 - 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=3055974515 TSecr=0 WS=128
47 8.205469178 192.168.1.3	52346 213.230.96.104	443 TCP	74 52346 - 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=3055974515 TSecr=0 WS=128
48 8.352226051 192.168.1.3	52350 213.230.96.104	443 TCP	74 52350 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=3055974662 TSecr=0 WS=128
49 8.354472116 213.230.96.104	443 192.168.1.3	52346 TCP	74 443 52346 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1436 SACK_PERM=1 TSval=3279033924 TSec
50 8.354472494 213.230.96.104	443 192.168.1.3	52338 TCP	74 443 52338 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1436 SACK_PERM=1 TSval=3279033923 TSec
55 8.509086096 213.230.96.104	443 192.168.1.3	52350 TCP	74 443 52350 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1436 SACK_PERM=1 TSval=3279034073 TSec
99 8.719268487 192.168.1.3	47564 213.230.96.104	80 TCP	74 47564 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=3055975029 TSecr=0 WS=128
114 8.850763882 213.230.96.104	80 192.168.1.3	47564 TCP	74 80 → 47564 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1436 SACK_PERM=1 TSval=3279034438 TSeci
1148 11.505244728 192.168.1.3	39464 213.230.96.104	443 TCP	74 39464 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=3055977815 TSecr=0 WS=128
1151 11.683380842 213.230.96.104	443 192.168.1.3	39464 TCP	74 443 → 39464 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1436 SACK_PERM=1 TSval=3279037223 TSec

A qarshidu.uz OPT

e 0x9492 A garshidu.uz A 213.230.96.104 OP

イロト イポト イヨト イヨト

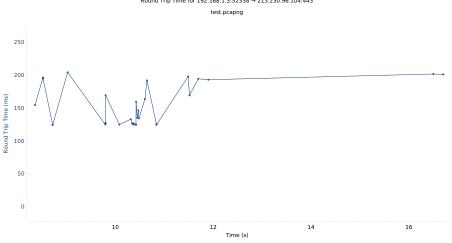
4					
Frame 45: 08 Dytes on uire (784 bits), 98 Dytes captured (784 bits) on interface uipszof3, id 0 Ethernet II, 576: 156:451 80:45308 (156:45:80:86:38:08, 051: 101:10420r_70:3b:e5 (b8:9a:2a:70:3b:e5) Internet Protocol Wersion 4, 576: 11.1.1, 051: 132.180.1.3 Domain Name System (response): 15, Dat Provide 108:44 Domain Name System (response)	0000 0010 0020 0030 0040	00 54 51 33 40 00 36 11 01 03 00 35 ed b6 00 40 00 01 00 00 00 01 08 71 75 7a 00 00 01 08 01 c0	2f b9 6 8d 94 9 61 72 7 8c 88 6	4 92 81 88 68 01 3 68 69 64 75 02 1 00 01 00 60 0e	*p; dE TQ30 6 / 5 0 arshidu uz
Transaction ID: 0x0492 ·Flags: 0x04300 Standard query response, No error Questions: 1 Antewer RRs 1 Authority RRs: 0 Additional RRs: 1	6650	10 00 04 d5 e6 60 68 00 00 00	00 29 6	4 88 99 99 99 99 99	·····``h•···)·····
- Queries · garshidu.uz: type A, class IN · garshidu.uz: type A, class IN, addr 213.230.06.104 · AddItional records [Request In: 43] [Time: 0.58476454 seconds]					

IPv4 · 1	IPv6	TCP · 5	UDP
----------	------	---------	-----

Addre	ess A	• Port A	Address B	Port B	Packets	Bytes	Packets A → B	Bytes	A → B	Packets B → A		Bytes B → A	Re	el Start		Duration	
	168.1.3		8 213.230.96.104		3 1.143	2,503 k		518	39 k		625	2,464			8.204891		8.9469
	168.1.3		6 213.230.96.104		3 16	7,034		9	1,159		7	5,8			8.205469		0.5087
	168.1.3	5235	0 213.230.96.104	44	3 14	6,957		8	1,117		6	5,84	40		8.352226		0.4911
	168.1.3		4 213.230.96.104			1.097		4	708		3		89		8.719268		0.3014
192.1	168.1.3	3946	4 213.230.96.104	44	3 27	9,859		14	2,001		13	7,85	58		11.505245		0.7922

Network Protocols and Performance

ITMM 2022 38/48


Opening a web connection ...

ip.addr == 213.230.96.104 && tcp.port == 39464			
No Time Source	Src port Destination	Dest port Protocol L	Length info
1148 11.565244728 192.168.1.3	39464 213.230.96.104	443 TCP	74 39464 443 [SYN] Seg=0 Win=64240 Len=0 MSS=1460 SACK PERM=1 TSval=3055977815 TSecr=0 WS
1151 11.683380842 213.230.96.184	443 192.168.1.3	39464 TCP	74 443 -> 39464 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1436 SACK_PERM=1 TSval=3279037223
1154 11.683444097 192.168.1.3	39464 213.230.96.104	443 TCP	66 39464 - 443 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=3055977993 TSecr=3279037223
1163 11.687536020 192.168.1.3	39464 213.230.96.104	443 TLSv1.3	583 Client Hello
1166 11.887868670 213.238.96.184	443 192.168.1.3	39464 TCP	66 443 - 39464 [ACK] Seq=1 Ack=518 Win=64768 Len=0 TSval=3279037407 TSecr=3055977997
1167 11.887868987 213.238.96.184	443 192.168.1.3	39464 TLSv1.3	2914 Server Hello, Change Cipher Spec, Application Data
1169 11.887912976 192.168.1.3	39464 213.230.96.104	443 TCP	66 39464 - 443 [ACK] Seq=518 Ack=2849 Win=61448 Len=0 TSval=3055978198 TSecr=3279037416
1170 11.887869064 213.230.96.104	443 192.168.1.3	39464 TLSv1.3	2599 Application Data, Application Data, Application Data, Application Data
1171 11.887948871 192.168.1.3 1173 11.892628665 192.168.1.3	39464 213.230.96.104 39464 213.230.96.104	443 TCP 443 TLSv1.3	66 39464 - 443 [ACK] Seq=518 Ack=5382 Win=59008 Len=0 TSval=3055978198 TSecr=3279037416 130 Change Cipher Spec. Application Data
1173 11.892020000 192.100.1.3	39464 213.230.96.104	443 TLSV1.3	164 Application Data
1175 11.893764666 192.168.1.3	39464 213.230.96.104	443 TLSV1.3	425 Application Data
1177 12.092989721 213.230.96.184	443 192.168.1.3	39464 TCP	66 443 - 39464 [ACK] Seq=5382 Ack=582 Win=64768 Len=0 TSval=3279037611 TSecr=3055978202
1179 12.092990172 213.230.96.104	443 192.168.1.3	39464 TLSv1.3	121 Application Data
1181 12.093050795 192.168.1.3	39464 213.230.96.104	443 TCP	66 39464 - 443 [ACK] Seq=1039 Ack=5437 Win=64128 Len=0 TSval=3055978403 TSecr=3279037611
1183 12.092990341 213.230.96.104	443 192.168.1.3	39464 TCP	66 443 - 39464 [ACK] Seq=5437 Ack=680 Win=64768 Len=0 TSval=3279037611 TSecr=3055978203
1184 12.092998436 213.230.96.104	443 192.168.1.3	39464 TLSv1.3	101 Application Data
1185 12.093116980 192.168.1.3	39464 213.230.96.104	443 TCP	66 39464 443 [ACK] Seq=1039 Ack=5472 Win=64128 Len=0 TSval=3055978403 TSecr=3279037611
1187 12.092990519 213.230.96.104	443 192.168.1.3	39464 TLSv1.3	97 Application Data
1189 12.093140835 192.168.1.3	39464 213.238.96.104	443 TCP	66 39464 - 443 [ACK] Seq=1039 Ack=5503 Win=64128 Len=0 TSval=3055978403 TSecr=3279037611
1190 12.092998608 213.238.96.104	443 192.168.1.3	39464 TCP	66 443 - 39464 [ACK] Seq=5503 Ack=1039 Win=64512 Len=0 TSval=3279037612 TSecr=3055978204
1191 12.092990702 213.230.96.104	443 192.168.1.3	39464 TLSv1.3	209 Application Data
1192 12.093169309 192.168.1.3	39464 213.230.96.104	443 TCP	66 39464 - 443 [ACK] Seg=1039 Ack=5646 Win=64000 Len=0 TSval=3055978403 TSecr=3279037613
 Transmission Control Protocol, Src Port; 	39464, Dst Port: 443, Seg:	0, Len: 0	
Source Port: 39464		-	
Destination Port: 443			
[Stream index: 10]			
[TCP Segment Len: 0]			
Sequence number: 0 (relative sequen	ice number)		
Sequence number (raw): 440046424			
[Next sequence number: 1 (relative Acknowledgment number: 0	sequence number)]		
Acknowledgment number (raw): 0			
1010 = Header Length: 40 bytes (1	(a)		
Flags: 0x002 (SYN)			
Window size value: 64240			
[Calculated window size: 64240]			
Checksum: 0xf828 [unverified]			
[Checksum Status: Unverified]			
Urgent pointer: 0			
Options: (20 bytes), Maximum segment s			
Transmission Control Protocol, Src Port:	443, Dst Port: 39464, Seq: 1	, Ack: 518, Len: 28	48
 Transport Layer Security 			
- TLSv1.3 Record Layer: Handshake Protoco	ol: Server Hello		
Content Type: Handshake (22) Version: TLS 1.2 (0x0303)			
Length: 122			
- Handshake Protocol: Server Hello			
Handshake Type: Server Hello (2)			
Length: 118			
Version: TLS 1.2 (0x0303)			
Random: 88a73abfa9b2f4ea4e8478b866a	ac17dea32fff7e6c1434a8		
Session ID Length: 32			
Session ID: 1915498050431ae9598389a			
Cipher Suite: TLS_AES_128_GCM_SHA25	56 (0x1301)		
Compression Method: null (0)			
Extensions Length: 46	-23		
 Extension: supported_versions (len= Extension: key share (len=36) 	-2)		
 Extension: Key_share (len=36) TLSv1.3 Record Layer: Change Cipher Spe 	ac Protocol: Change Cipher So	er	
TLSv1.3 Record Layer: change cipher spe TLSv1.3 Record Layer: Application Data			

Network Protocols and Performance

ITMM 2022 39/48

Opening a web connection ...

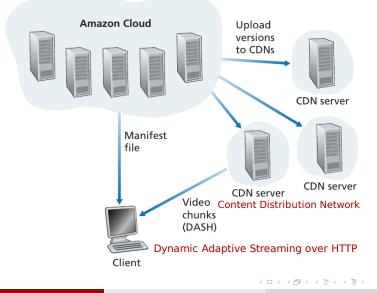
Round Trip Time for 192.168.1.3:52338 → 213.230.96.104:443

Michele Pagano

Network Protocols and Performance

2 **ITMM 2022** 40/48

New Network Solutions

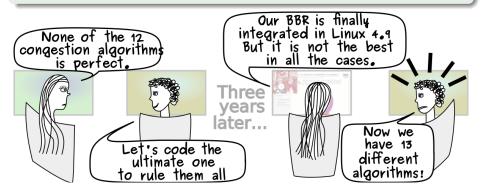


Michele Pagano

Network Protocols and Performance

ITMM 2022 41/48

Netflix video streaming platform



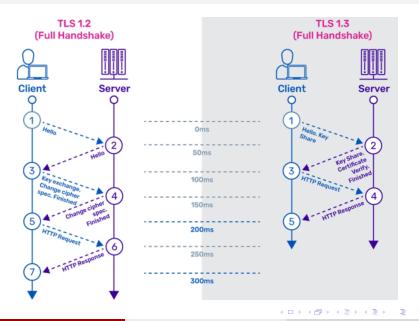
Network Protocols and Performance

ITMM 2022 42/48

BBR: Bottleneck Bandwidth and Round-trip propagation time

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson "BBR: Congestion-Based Congestion Control", ACM Queue, Oct. 2016

BBR v2 – A Model-based Congestion Control

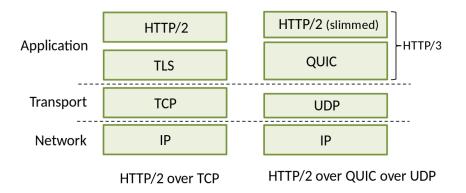

N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev, P. Jha, Y. Seung, M. Mathis, V. Jacobson, IETF 104, Prague, March 2019 https://groups.google.com/d/forum/bbr-dev

Michele Pagano

Network Protocols and Performance

ITMM 2022 43/48

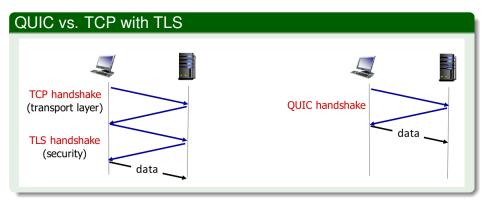
TLS 1.3 – Faster TLS Handshake


Michele Pagano

Network Protocols and Performance

ITMM 2022 44/48

QUIC and HTTP/3


- QUIC: Quick UPD Internet Connections
- Application–layer protocol, on top of UDP
- Deployed on many Google servers and apps

< 回 > < 三 > < 三 >

QUIC's major features

- Connection–oriented and Secure
- Application-level streams
- Reliable, TCP-friendly congestion-controlled data transfer

< ロ > < 同 > < 回 > < 回 >

Conclusions

- Future killer applications and their traffic features
- New versions of TCP
- TCP or QUIC?
- Effect of CDNs
- Role of Middleboxes
- SDN controller
- Mobile users
- IoT and IIoT
- QoS vs. QoE

Michele Pagano

< ∃ >

ITMM 2022 48/48