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Introduction

* Note that the first papers devoted to models of QISs were published by
Sigman and Simchi-Levi [1] and Melikov and Molchanov [2] independently
of each other. For detailed review see Krishnamoorthy, Shajin, and
Narayanan [3].
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For the first time the IMSs with positive service times were called
queuing-inventory systems (QIS) in the papers Schwarz and Daduna [4]
and Schwarz et al. [5].

4. Schwarz, M; Daduna, H. Queuing Systems with Inventory Management with Random Lead Times and with Backordering, Math.
Methods Oper. Res. 2006, 64, 383-414. [CrossRef]
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(1)

Common RPs

(s, S)-policy: in this policy, the replenishment size is that much to bring the
level back to Sat the replenishment epoch, where s is the recorded level and
S is the maximum capacity of the warehouse; sometimes this policy is called
“Up to S” policy.

(s, Q)-policy: in this policy, the replenishment size is fixed and is equal to
(Q=S-s; in this policy to avoid repeated replenishment, it is assumed that

s<(5/2).
Randomized policy: in this policy, the probability that replenishment size is
S
n equal to p,, such that an = 1, where pg > 0.
n=1

Base stock policy: in this policy, a replenishment is called every time an
item sells out; sometimes this RP is called either (S-1, S)-policy or one-to-
one ordering policy. This policy is advised for bulky, expensive items with
low demand and slow lead times.
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Figure 1. Block diagram of the system under study.



The block diagram of the investigated single-server QIS of infinite capacity is shown in
Figure 1. The homogeneous c-customers arrive at the service facility according to Poisson
process with rate A ™. The service times of the c-customers are assumed to be exponentially
distributed with parameter y. The service requires an idle server along with items (one for
each c-customer) that are stored in an inventory of maximum capacity S.

In the system, hybrid sales scheme is used, i.e., some part of c-customers is serviced
according to the backorder sale scheme, while the other part is serviced according to the
lost sale scheme. This means the following: if there are no stocks in the system upon arrival
of c-customer, then, in accordance to the Bernoulli trials, it either, with probability (w.p.),
@1 joins the queue of infinite length (backorder sale scheme), or w.p. ¢, leaves the system
unserved (lost sale scheme), where ¢1 + ¢ = 1.

The system also receives n-customers with a rate A~. When a n-customer arrives,
one c-customer force out of the system. A n-customer can force out of the system even a
c-customer, which is in the server, while the inventory level does not change, since it is
assumed that stocks are released after the completion of servicing a c-customer. If there is a
queue of c-customers at the time an n-customer arrives, then only the c-customer is pushed
out from the queue (i.e., the service of the c-customer, which is in the server, continues); if
there are no c-customers in the system, then the received n-customer does not affect the
operation of the system.



In the system, catastrophic events can occur only in its warehouse part. The flow of
catastrophic events is Poisson one with the parameter x, and at the moment of arrival of
such an event, all the reserves of the system are instantly destroyed. As a result of the
catastrophes, even the stock, which is at the status of release to the c-customer, is destroyed.
In the latter case, the c-customer whose service was interrupted due to a catastrophe is
returned to the queue; in other words, the catastrophe only destroys the stocks of the
system and does not force c-customers out of the system. If the inventory level is zero, then
the disaster does not affect the operation of the system warehouse.

Here, two inventory replenishment policies were considered. The first RP was accord-
ing to a (s, S)-type policy (sometimes this policy is called “Up to S”). In this policy, when
the inventory level drops to the reorder point s, where 0 < s < S, an order was placed
for replenishment and upon replenishment, the inventory level was restocked to level S,
no matter how many items are still present in the inventory. Second RP is randomized
(randomized replenishment policy, RRP), In RRP, an order is placed only when the
system’s warehouse is completely empty and the volume of the supplied stock is a random
variable with a known distribution; in other words, w.p. a;;, the volume of incoming stock
is equal to m, where Eﬁ,zl ayp = 1, g > 0. In both RPs, the parameter v indicates the
reorder rate per order.

The task is to find the joint distribution of the number of c-customers in the system
and the inventory level of the system, as well as to calculate the key performance measures
of the system.



Model Under (s,S) Policy

Let X; be the number of customers at time t and Y; be the inventory level

at time f. Then, the process Z; = {(X¢, Y;),t > 0} forms a continuous time Markov chain
(CTMC) with state space

where L(n) = {(n,0),(n,1),...,(n,S)} is the subset of state space E with X; = n called the
level n.

Let g((ny,mq), (np, my)) denote the transition rate from state (n1,m;) € E to state
(np,my) € E.

investigated CTMC has a generator G = (q((ny,mq), (n2,mp))), (ny,my),(n2,my) € E,
with the following transition rates for (n1,my) € E :



q((nm,m1), (n1 +1,0)) = A" ¢1-x(my = 0); (1)

q((n1,m1), (m1 +1,m1)) = A7-x(my > 0); (2)
q((ny,my), (n1 —1,my)) = A~ -x(n1 > 0); (3)
q((ny,my), (my —1,my = 1)) = p-x(ny > 0)-x(my > 0); (4)
q((n1,my), (n1,0)) = x-x(m1 > 0); (5)
q((n1,my), (m,S)) = v-x(m <s). (6)

Hereinafter, x(A) is the indicator function of the event A, which is 1 if A is true and
0 otherwise.



By re-numbering the states of the system in a lexicographic way, from relations (1)—(6)
we conclude that the process Z;,t > 0, is a level independent quasi birth—death (LIQBD)
process and its generator G might be represented as follows:

(B Ay O ... O ..\
Ar  Aq A[] s O ce.
G=|0O0 A A1 Ay O ... | (7)

O O Ay Ay Ay ...
\:r )

where O denotes zero square matrix with dimension S + 1, and all other block matrices

are square matrices of the same dimension. Entities of the block matrices B = ||b;;|| and
A = ||a§c) I,i,j =0,1,...,S, are determined as follows:
( v if0 <1 < s,7=25,
K ifi >0,j =0,
b — ) —(vE+ATe1) ifi =j=0, (8)
i\ —(w+r+AT) if0<i<s,i=]
—(k+AT) ifs<i<S,i=],
X 0 in other cases;

AT ifi =7=20,
0 _ P1 i =]
0 in other cases;



1 if0 <171 <s,]=25,
K ifi >0,j =0,
PRES I — (A" + v+ AT @) ifi =j =0, (10)
i — v+ +pu+ AT +AT) W0 <i<s,i=]j,
—(k+pu+ AT +A) ifi = s,i =],
L 0

in other cases;

AT if i = j,
(2)
a;; = I ifi =0,j=1—1,

(11)
0 in other cases.
The entities of the generator A = Ay + A, + A> are determined as follows:
r —v ifi =j7j=0,
1 if0 <171 <s,j]=25,
)t ifi =1,7 =0,
aij =\ ifi>1,j—0, (12)
— U ifi = 0,j =1,
LM ifi = 2,j=1i— 1.

The stationary probability vector that corresponds to the generator A is denoted by
m=(m(0), T(1),...,7T(S)). In other words, we have the balance equations:

A = 0, e = 1, (13)

where 0 is the null row vector of dimension 5 + 1 and e is the column vector of dimension
5 + 1 that contains only 1's.



By using the recursive procedure, we obtained that Equation (13) had the following
solution:

(0) = =) bc, (1) =dm(0) —b; m(m) = aym(1),2 <m < S, (14)
1 +dc
-1 .
B B S B (14+4)", ifl<m<s+1,
where d = 52,0 =, € = Dheanr 0 =4 1 g1+, ifs+1<m S

Using the stationary probability vector of the generator A given by (14), we can derive
the ergodicity (stability) condition of the process Z;,t > 0.

Proposition 1. Under (s,S) policy, the process Z;,t > 0, is ergodic if and only if the following
condition is fulfilled:
AT(1 = @om(0)) < A~ + u(1 — 7(0)). (15)

Proof of Proposition 1. In accordance with Neuts , the process Z;, t > 0, is ergodic
if and only if
TAge < TAze. (16)



Special Cases

Note 1. The established ergodicity condition (15) has a probabilistic meaning, i.e., it indicates that
the rate of c-customers entering the system must be less than the total rate of negative customers
and the rate of served c-customers. We find from (15) that in general case stability condition for
the present model is dependent on the storage size of system, the rate of catastrophes, and the
replenishment rate.

Note 2. Consider the following special cases.

(i) If ¢ = 1 (i.e., when a pure lost sale scheme is used) and A~ = 0 (i.e., when there
are not negative customers) from (9), we find the ergodicity condition for the single-server
Markovian queuing system, i.e., A™ < p. In other words, under such assumptions, the
ergodicity condition of the system does not depend on the storage size of system, the rate
of catastrophes, and the replenishment rate. Similar results for other models were obtained
in Krishnamoorthy and his students

(ii) If 9o = 1 and A~ > 0, the ergodicity condition is depending on all indicated
parameters of the system, see Formula (14).



Calculations of SSPs

A steady—s’gate probability that corresponds to the generator matrix G, we denote

by p = (po, p1, p2,- ), where py = (p(n,0),p(n,1),...,p(n,S)),n = 0,1,---. Under
the ergodicity condition (15), desired steady-state probabilities are determined from the

following equations:
pn = poR",n > 1, (17)

where R is the nonnegative minimal solution of the following quadratic matrix equation:
R*A; + RAy + Ag = 0.

From (8)—(11), it was concluded that bound probabilities py are determined from the
following system of equations with normalizing conditions:

po(B + RAy) =0,

po(I —R) e =1. (18)

where I indicate the identity matrix of dimension S + 1.



Under RRP

Now consider the computation of the steady-state probabilities under RRP. In this case,
parameters q((nq,my), (ny, my)) are calculated via relations (1)—(5) but relation (6) should
be substituted by the following equations:

q((n1,0), (ny,m)) = vyp-x(1 <m < 85),

where vy, = v, 1 < m < 5.
Therefore, tor this policy the generator matrix of the process Z;,t = 0, has the follow-
ing form:
(B A O ... O ...\
A, A Ay - O
O A A Ay O
O 0 A, A A

Gt
|




Here, entities of matrices B and El are calculated as follows:

( vj ifi=0,j>0,
N K ifi >0,j =0,
bfj: 4 —(U+")l+¢)1) leZ-F:{}’
—(}c-|—)1+) if{}{:iisfi:jl
\ 0 in other cases ;
. I»"}' if[i: 0;}:" 0;
K iff:" O,rj:D.r
’”Ef.”: { (AT +v+ATe) ifti=j=0,
—(K-|—}l+/]!r++")l_) iff}{},f:j;
0 in other cases.

\,

In this model, entities of the generator A= Ay+ 2‘[1 + A; are determined as

r

—v ifi=j7=0,
Vi iff:U,j}U,
H+K ifi=1,7=0,
K ifi >1,7=0,
—U ifi >0,j =1,

o ifi>2j=i-1.

(19)

(20)

(21)



Again, using the recursive procedure, we found that the balance Equation (13), where
the matrix A is replaced by A, the following solution was used

m(m) =ryum(0), 0 <m<S, (22)

where r,, are calculated from the following reverse recursive relations

?’{]:1,
_ _Ys
FS_F+K1
¥ —L(r +vy), 1<m<S—-1
m—y_|_xjum—|—1 M) -~ o~ .

Here, the unknown parameter 77(0) is found from the normalizing condition, i.e.,

-1
(0) = (i r,n) . (23)

r=>0

In analogy with Proposition 1, it is easy to show that the following fact is true.



Proposition 2. Under RRP policy, the process Zi, t > 0, is ergodic if and only if the condition (15)
is fulfilled where 1t(0) is defined as in (23).

Furthermore, by using a system of Equations (17) and (18), the steady-state probabili-
ties for this model were calculated.



Performance Measures

In this section, we are interested in the key performance measures of the investigated
system related to both inventory and queuing under each RP. Having determined the
steady-state probabilities under both RPs, we can compute the key performance measures
of the investigated models explicitly.

Performance measures related to inventory are the following:

e Average inventory level (S;,) under both policy

S 00
Sow =3y _ m ) p(nm); (24)

e  Average order size under (s, S) policy

S 00
Vo, = Z m Z p(n,S—m); (25)



Performance Measures

S 00
Vi = (21 macm) (Z[:]p(n,()));

Average reorder rate (RR) under (s,S) policy

under RRP

RR = p i p(nf5+1)+f<(1— i P(H;O));

n=1 1n=0

under RRP
RR = u anl p(n,1)+ K(] — ano p(n,O)).

(26)

(27)

(28)



Performance Measures

Performance measures related to queuing are the following:

e Average length of the queue (L,;) under both policies

00 S
L,y = Z n Z p(n,m). (29)
n=1 m=0

e Lossrate (LR) of customers under both policies

LR = A" g i p(n,0)+ A~ (1 — i p(O,m)). (30)

n=0 m=0



Numerical Results

First, consider the results for the model with “Up to §” policy. For this RP, we
considered the behavior of performance measures versus s as well as the finding the
optimal value of s to minimize the expected total cost (ETC) that was defined as follows:

ETC(s) = (K+ ¢ Vaw)RR + ¢;,Sap + CpskSan + €] LR + ¢y Lo, (31)

where K is the fixed price of one order, ¢, is the unit price of the order size, ¢, is the unit
inventory storage price per unit of time, cps is the price of unit inventory damaging, c; is
the cost for a single c-customer loss, ¢y is the price per unit time of queuing delay for a
single c-customer.



Numerical Results

For this policy, it was assumed that values of all parameters of the QIS were fixed
except the parameter s. In other words, here, numerical experiments were processed to
analyze the effect of parameter s on the performance measures.

Let us consider S = 50 and that values of load parameters are selected as follows:
AT =6, A7 =1,k =1,u =38,91 = 0.6,v = 1. The coefficients in the expression for
functional in ETC (see (31)) were chosen as follows: K = 10,¢, = 15,¢;, = 10,¢; = 450,
cw = 400, cps = 15.

The impact of reorder points s on performance measures, ETC, are shown in Table 1.
From this table, we conclude that the rate of change of all performance measures was very
low and ETC was a unimodal function; its minimal value is indicated in bold.



For this policy, it was assumed that values of all parameters of the QIS were fixed
except the parameter s. In other words, here, numerical experiments were processed to
analyze the effect of parameter s on the performance measures.

Let us consider S = 50 and that values of load parameters are selected as follows:
AT =6, A" =1,k =1,u =8,¢; = 0.6,v = 1. The coefficients in the expression for
functional in ETC (see (31)) were chosen as follows: K = 10,¢, = 15,¢;, = 10,¢; = 450,
cp = 400, cps = 15.

The impact of reorder points s on performance measures, ETC, are shown in Table 1.
From this table, we conclude that the rate of change of all performance measures was very
low and ETC was a unimodal function; its minimal value is indicated in bold.



Table 1. Impact of reorder point 5 to perf-:}rlnance measures and ETC.

s Sav Vao Law RR LR ETC

1 21.4427 25.0148 14.1234 0.5004 2.4279 8176.89
2 21.4447 25.0169 14.1208 0.5005 2.4278 8175.77
3 21.4470 25.0193 14.1183 0.5006 2.4277 8174.74
4 21.4495 25.0219 14.1161 0.5008 2.4276 8173.85
5 21.4524 25.0249 14.1142 0.5009 2.4276 8173.12
6 21.4557 25.0282 14.1124 0.5011 2.4275 8172.47
7 21.4593 25.0319 14.1109 0.5013 2.4274 8171.96
8 21.4646 25.0348 14.1097 0.5015 2.4274 8171.64
9 21.4681 25.0407 14.1083 0.5018 2.4274 8171.22
10 21.4732 25.0459 14.1072 0.5021 2.4273 8171.00
11 21.4825 25.0480 14.1061 0.5025 2.4273 8170.92
12 21.4855 25.0583 14.1053 0.5028 2.4273 8170.81
13 21.4948 25.0655 14.1045 0.5032 2.4272 8170.84
14 21.5021 25.0724 14.1039 0.5036 2.4272 8171.02
15 21.5099 25.0827 14.1032 0.5043 2.4272 8171.19
16 21.5200 25.0929 14.1026 0.5049 2.4272 8171.50
17 21.5318 25.1054 14.1020 0.5058 2.4272 8172.04
18 21.5348 25.1166 14.1016 0.5066 2.4272 8172.45
19 21.5577 25.1305 14.1012 0.5076 2.4271 8173.11
20 21.5731 25.1459 14.1009 0.5087 2.4271 8173.99
21 21.5913 25.1618 14.1006 0.5101 2.4271 8174.78
22 21.6091 25.1820 14.1002 0.5116 2.4271 8175.86
23 21.6300 25.2029 14.1000 0.5133 2.4271 8177.14
24 21.6554 25.2233 14.0998 0.5154 2.4271 8178.81
25 21.6785 25.2514 14.0996 0.5177 2.4271 8180.22
26 21.6971 25.2764 14.0994 0.5194 2.4271 8182.75
27 21.7322 25.3014 14.0992 0.5218 2.4271 8184.44
28 21.7708 25.3438 14.0991 0.5271 2.4271 8186.67
29 21.8121 25.3939 14.0989 0.5329 2.4271 8189.58
30 21.8532 25.4310 14.0988 0.5399 2.4271 8192.77




The goals of the numerical experiments for the model with RRP were the investigation
of the behavior of performance measures versus initial parameters for three schemas of
changing of probabilities ay,,, 1 < m < S: (1) when a,,,, 1 < m < S are constants, (2) when
&y, 1 < m < § are increasing ones, and (3) when a,,,, 1 < m < S are decreasing ones.

Here, we again assumed that S = 50 and ¢, = 0.6. Additionally, in the first schema,
we set &y = g5, 1 < m < 50; in the second schema, we set a; = 0.01755, ay = &, 1 +
0.0001, 2 < m < 50; in the third schema, we set a1 = 0.02245, &, = «,;,—1 — 0.0001,
2 <m < 50;

Values of other parameters are shown in the title of the appropriate Tables 2-5. In these
tables, the first row corresponds to schema (1), the second row corresponds to schema (2),
and the third row corresponds to schema (3).



Table 2. Performance measures vs. AT under RRP, A— = 1, =15, v =1,x = 1.

AT Sao Vao Law RR LR
10.4293 13.6926 2.7998 0.5370 1.7367
5 10.8777 13.5965 2.7612 0.5332 1.7260
9.9749 13.7905 2.8397 0.5408 1.7475
10.3387 13.7382 3.0565 0.5388 1.8006
5.2 10.7845 13.6384 3.0111 0.5348 1.7892
98870 13.8400 3.1036 0.5427 1.8122
10.2490 13.7845 3.3380 0.5406 1.8645
54 10.6920 13.6810 3.2847 0.5365 1.8524
9.7998 13.8901 3.3936 0.5447 1.8769
10.1600 13.8315 3.6481 0.5424 1.9286
5.6 10.6003 13.7243 3.5854 0.5382 1.9156
9.7133 13.9409 3.7138 0.5467 1.9417
10.0718 13.8792 3.9915 0.5443 1.9926
5.8 10.5095 13.7685 3.9175 0.5399 1.9789
9.6276 13.9923 14.0692 0.5487 2.0067
9.9845 13.9276 4.3739 0.5462 2.0568
6 10.4197 13.8134 1.2864 0.5417 2.0423
9.5428 14.0445 1.4661 0.5508 2.0717
9.8981 13.9769 4.8024 0.5481 2.1212
6.2 10.3308 13.8591 4.6985 0.5435 2.1058
94588 14.0975 49122 0.5528 2.1370
9.8127 14.0269 5.2859 0.5501 2.1858
6.4 10.2430 13.9056 5.1620 0.5453 2.1696
9.3757 14.1511 5.4175 0.5549 2.2024
9.7283 14.0777 5.8360 0.5521 2.2506
6.6 10.1562 13.9530 5.6875 0.5472 2.2335
9.2930 14.2056 5.9926 0.5571 22681
9.6450 14.1294 6.1678 0.5541 2.3156
6.8 10.0706 14.0013 6.2886 0.5491 2.2976
9.2125 14.2608 6.6603 0.5592 2.3341
9.5627 14.1819 7.2012 0.5562 2.3809
7 9.9861 14.0504 6.9829 0.5510 2.3620

9.1325 14.3168 74371 0.5614 2.4003




Table 3. Cont.

A Suo Vi L, RR LR
10.7410 13.5640 1.9193 0.5319 2.1369
1.8 11.1563 13.4797 1.9016 0.5286 2.1262
10.2401 13.6497 1.9375 0.5353 2.1479
10.7595 13.5374 1.7608 0.5309 2.2221
2 11.2146 13.4555 1.7460 0.5277 22115
10.2972 13.6204 1.7759 0.5341 2.2330
10.8145 13.5126 1.6206 0.5299 2.3018
22 11.2729 13.4331 1.6082 0.5268 22913
10.3507 13.5932 1.6332 0.5331 2.3136
10.8660 13.4897 1.4963 0.5290 2.3763
24 11.3259 13.4124 1.4859 0.5260 23659
10.4009 13.5680 1.5069 0.5321 23869
10.9142 13.4684 1.3859 0.5282 24459
2.6 11.3755 13.3931 1.3771 0.5252 24356
10.4478 13.5446 1.3949 0.5312 2.4563
10.9594 13.4486 1.2877 0.5274 2.5108
2.8 11.4220 13.3752 1.2802 0.5245 25007
10.4917 13.5229 1.2954 0.5303 2.5210
11.0016 13.4303 1.2002 0.5267 2.5713
3 11.4655 13.3586 1.1937 0.5239 2.5614
10.5328 13.5028 1.2068 0.5295 2.5814




Table 4. Performance measures vs. v under RRP: AT =5, A~

=1, u=15 x =1

v Sav Vao Lao RR LR
10.4293 13.6926 2.7998 0.5370 1.7367
1 10.8777 13.5965 2.7612 0.5332 1.7260
9.9749 13.7905 2.8397 0.5408 1.7475
11.5715 12.4789 2.1985 0.5872 1.5968
1.2 12.0587 12.3874 2.1724 0.5829 1.5869
11.0774 12.5721 2.2255 0.5916 1.6070
12.5297 11.4631 1.8188 0.6293 1.4813
14 13.0489 11.3761 1.7996 0.6246 1.4720
12.0029 11.5518 1.8385 0.6342 1.4908
13.3451 10.6004 1.5601 0.6651 1.3844
1.6 13.8910 10.5177 1.5452 0.6599 1.3757
12.7907 10.6847 1.5753 0.6704 1.3933
14.0472 9.8585 1.3742 0.6959 1.3020
1.8 14.6140 9.7797 1.3623 0.6903 1.2937
13.4694 9.9387 1.3865 0.7016 1.3103
14.6581 9.2136 1.2352 0.7226 1.2310
2 15.2465 9.1385 1.2254 0.7167 1.2232
14.0602 9.2900 1.2454 0.7286 1.2389
15.1945 8.6478 1.1281 0.7461 1.1693
22 15.8000 8.5762 1.1198 0.7399 1.1619
14.5790 8.7208 1.1367 0.7524 1.1767
15.6692 8.1476 1.0435 0.7668 1.1151
24 16.2898 8.0791 1.0363 0.7604 1.1082
15.0383 8.2173 1.0508 0.7734 1.1222




Table 4. Cont.

v S0 Voo L., RR LR
16.0924 7.7020 0.9752 0.7853 1.0673
2.6 16.7261 7.6365 0.9690 0.7786 1.0607
15.4478 7.7687 0.9816 0.7921 1.0740
16.4718 7.3026 0.9193 0.8018 1.0247
2.8 17.1174 7.2398 0.9137 0.7950 1.0184
15.8151 7.3665 0.9249 0.8089 1.0311
16.8141 6.9425 0.8727 0.8168 0.9865
3 17.4703 6.8822 0.8678 0.8097 0.9805
16.1464 7.0039 0.8777 0.8240 0.9926




Table 5. Performance measures vs. ¥ under RRP; AT =5, A~ 1, u 15, v =1

e SHU Vat;l Lat,l RR LR
10.4293 13.6926 2.7998 0.5370 1.7367
1 10.8777 13.5965 2.7612 0.5332 1.7260
9.9749 13.7905 2.8397 0.5408 1.7475
9.6443 14.7246 3.1521 0.5774 1.5486
1.2 10.0636 14.6395 3.1099 0.5741 1.8390
9.2205 14.8111 3.1958 0.5808 1.8583
5.9548 15.5927 3.5168 0.6115 1.9440
1.4 9.3468 15.5167 3.4702 0.6085 1.9353
5.5592 15.6699 3.5650 0.6145 1.9528
5.3492 16.3323 3.9015 0.6405 2.0264
1.6 5.7164 16.2637 3.8496 0.6378 2.0184
79791 16.4019 3.9553 0.6432 2.0345
7.8156 16.9696 4.3143 0.6655 2.0985
1.8 5.1604 16.9072 4.2560 0.6630 2.0911
7. 4684 17.0327 4.3748 0.6680 2.1060
7.3432 17.5242 4.7640 0.6872 21622
2 76679 17.4672 4.6979 0.6850 2.1554
7.0166 17.5820 4 8327 0.6875 21692
6.9229 18.0112 5.2610 0.7063 2.2191
2.2 7.2294 17.9587 5.1852 0.7043 22127
6.6147 18.0644 5.3398 0.7084 2.2256
6.5469 18.4422 5.8178 0.7232 2.2704
2.4 6.8371 18.3936 5.7302 0.7213 2.2643
6.2553 18.4913 5.9090 0.7251 2.2765
6.2089 18.8262 6.4504 0.7383 23168
2.6 6.4842 18.7810 6.3481 0.7365 2.3111
5.9323 18.8719 6.5573 0.7401 2.3227
5.9035 19.1705 71797 0.7518 2.3593
2.8 6.1655 19.1284 7.0586 0.7501 2.3538
5.6405 19.2132 7.3065 0.7535 2.3648
5.6264 19.4810 8.0339 0.7640 2.3983
3 5.8762 19.4415 7.8584 0.7624 2.3931
5.3758 19.5210 B.1865 0.7655 2.4036




Now, we present the effect of initial parameters as well as considered schemas of
changing probabilities ay;, 1 < m < S on the performance measures of the investigated
RRP as follows:

e An analysis of data in Tables 2-5 showed that the second schema was favorable for
all performance measures, except for the average inventory level. For the average
inventory level, the third schema was favorable. It is interesting to note that the first
schema was always intermediate between the three schemes.

e Table 2 shows that for all schemas, except for the average inventory level, perfor-
mance measures increased versus the rate of consumer customers. These findings
were expected.



From Table 3, we can see that the average inventory level as well as the rate of loss
of consumer customers increased when the rate of negative customers increased.
However, the main performance measures decreased as the rate of negative customers
increased. These findings were true for all schemas, and they were also expected.
From Table 4, we can notice that the average inventory level as well as the reorder rate
increased when the replenishment rate increased. A first observation concerning the
behavior of reorder rate was unexpected. This phenomenon was explained as follows:
when the replenishment rate increased, the probability that the inventory level was
positive also increased and, hence, the catastrophe rate increased (see the second
term in Formula (28)). Here, the rest of the performance measures were decreased
versus replenishment rate. These findings were true for all schemas, and they were
also expected.

Table 5 shows that for all schemas, excluding the average inventory level, performance
measures increased versus the rate of catastrophes. These findings were true for all
schemas, and they were also expected.

Note that the values of all performance measures in all Tables 2-5 changed smoothly.



Under (s, Q) Policy

e (atastrophic events occur only 1n 1ts warchouse part and they form the Poisson flow
with the parameter k. Upon arrival of catastrophic event, all the inventory 1s instantly
destroyed, and even the item, which 1s at the status of release to the c-customer,
1s destroyed. The c-customer whose service was interrupted due to a catastrophe 1s
returned to the queue, 1.e. the catastrophe only destroys the inventory and does not
force c-customers out of the system. If the inventory level is zero, then the catastrophe
does not affect the operation of the system warehouse.

e Here (s, Q), Q = § — s, inventory replenishment policy is considered, 1.e. when the
inventory level drops to the reorder point s, where 0 < s < (§/2), an order of size
Q = § — s 1s placed for replenishment.

o The lead time of the order is exponentially distributed with mean v



Ergodicity Condition

Let X; be the number of c-customers at ime ¢ and Y; be the inventory level at time
t. Then, the process Z, = {(X,.Y,),r = 0} forms a continuous time two-dimensional
Markov chain (2D MC) with state space

o
= U L(n)

n=I()

where L(n) = {(n,0), (n, 1), ..., (n, §)} 1s the subset of state space E with X (1) = n
called the level n.

Let g((n1,my), (n2, m2)) denote the transition rate from state (n), m;) € E to state
(n2, my) € E. Taking into account the assumptions made in Sect. 2, we obtain following
formulas for the generator G = (g((ny, my), (n2, m2))). (ny.my), (n2.my) € E :

g((ny.my), (n + 1,0)) = 279 - x(my = 0); (32)



g((ny.my), (ny + 1,my)) = 1% - x(my > 0): (33)

qg((ny,my), (my — 1,my)) =21~ - x(n; > 0); (34)
g((ny,my), (ny —1,my — 1)) = p- x(ny > 0) - x(m > 0): (35)
qg((ni,m), (n1,0)) =« - x(m > 0): (36)
qg((ny,my), (ny,m +S —5)) =v-x(m <5s). 37)

In (1)-(6) x(A) is the indicator function of the event A, which is | if A is true
and O otherwise. From relations (32)-(36) we conclude that the process Z;.r = 0, is a

Level Independent Quasi Birth-Death (LIQBD) process and its generator G might be
represented as follows:

(BA() ) s i \
A2 A1 Ao --- O ...
G = OAzAlA()O... ’ (38)
O 0O A A Ap ...

\ o)

where O denotes zero square matrix with dimension S + 1, and all other block matrices
are square matrices of the same dimension.




Entities of the block matrices B = ||b;;|| and Ay = ||a}j’*"||. i.j = 0,,...85, are
determined from following relations:
v if0<i<sj=i+98 —s,
ifi > 0,j=0,
+ - B S
by = —(v+21ter) | iff=j=10, (39)

—(v+k+1rt) if0<ix<s, i=}j,

—(k +271) ifs <i <8,i=j,
0 in other cases;

(n _
a; =

Atgy ifi=j=0,
a’ =1 At ifi£0,i=],
0 1in other cases:

v if0<i<s,j=i+8§ -y,

K ifi > 0,5 =0,
—(A"+v+2rte) ifi=j=0,
—(v4+x+p+2rt+a7) if0<i<si=]j,
—(k+pn+2rt4+17) ifi > s, i =j,

0 in other cases:

(40)

(41)



A if i = j,
5
ai) =4 w ifi=0.j=i—1, (42)
0 in other cases.

The entities of the generator A = Ag + A + A2 are determined as follows:

—v ifi =j =0,
v ifO0=i =s,j=i+ 58 — =,
=4 K ifi=1,7j =0,
ajj = 1 K ifi = 1.7 =0, (43)
—( + v 4+ K) if0=i =s5.j =1,
— (1 + K) iti =5, j=1i
L ifi=2,j=1i-—1.
We denote the steadvy-state probabilities that correspond to the finite generator matrix
A by the vector m = (mwr (D). w(1). ..., w(S)). The vector satisfies the following balance
equations:
(44)

A =0, me = 1

where 0 15 null row vector of dimension S -+ 1 and e 1s column vector of dimension
S - 1 that contains only 17s,
The balance equations in (44) can be rewritten as (see Fig. 2)



v (0)+ (k +pw)r(l) +x(@2)+---+7(5)) =0
—wH+k+wa@P)+pur+1)=01<j=<s
Kk +pur(P)+pur(+1)=0,s+1<j<Q-1
v —Q)—k+wWr()+ur(j+1)=0,0<j=5-1

v (s) — (k + p)m(S) =0,

with the normalizing condition

Zf_nnm = 1.

(45)

(46)

(47)

(48)

(49)

(50)



Fig. 2. State diagram



JF—=x
TG+ 1) = w(Daje1aj4 =(I+E) sH1=j=0—1 (51)
From the Eq. (48)
7G4+ 1) =a(Daj —aObj1.Q=j=5—1 (32)

vhere

" . - - 3 =
N e R " K\ TeE £y v P
iyl = a, |(l+—) — ﬂk(l—f-—) (—)Hﬂﬂb' 1=(—)(1+—) -
I+ T m ‘E Iz pe " Iz ("

Then, by using the Eq,(45:l . we write (1) in terms of  (0) as following.

:r{l}=3r{ﬂ)(x+u)— (E) (53)
I 7

We get the probability given in (54) by using the normalizing condition in (49) and
he results

() + (D) +m(Dfaz +---+asp1| + 7w (D]ass2 + --- + as]
—a (O [bos1 + -+ bs]| =1

T(O)1 — (boy1 +---+ bs)]| + 7 (DI + (a2 + --- +as)] = 1

K 5
L+ 52 514 ‘ (54)
1+ (%) E:Ll dy — Z:I?=Q+] bj

() =



That 1s,
s s
+ + * - : (55)
AT (0) + A E ;‘:ln{‘” <A+ u E jzln(;}.

By using the normalizing condition (49) , we derive the following result:

2T =@ (0)) < A7 + u(l — 7 (0)). (56)

Proposition. The process Z;, t = 0, is ergodic 1f and only if the following condition
is fulfilled:
A7 (1 = gam (0))

= < (37)
A7+ pu(l = m(0))

P



Letp = (po. 1. P2. ... ) denote the steady-state probabilities of the queucing-inventory
system that corresponds to the generator matnx & an (7), where (5 + 1) dimensional
vector p, 15 partittoned as p,, = (p(n, O), p(n, 1), .... pin,. 5)). n = 0. That s, the vector
P saushes

pG — 0 and pe — 1. (58)

Each part p(n, i) gives the steadyv-state probability that there are n.n = 0, c-
customers in the system and the number of items in the inventory is (.0 = § =
5.

Under the ergodicity condition (57), the steady-state probabilities of the queueing-
inventory system are determined from the following equations:

P = ,I'J'{;R'". n=1. [59}
where R is nonnegative minimal solution of the following quadratic matrix equation:

R°A> + RA| + Ag = 0.

Bound probabilities pg are determined from following syvstem of equations with
normalizing condition:

po(B + RA2) = 0.

rold — R) le =1, [ﬁ{]}

where 1 indicate the identity matrix of dimension § + 1.



Performance Measures

The main performance measures of the investigated system related to both inventory and
queueing are determined via steady-state probabilities. By using the standard technique,
we can compute the mentioned performance measures of the investigated models as
follows.

Performance measures related to inventory are following:

e Average inventory level (5,,)

& o0
Sav = E m E : pln, m)
m=] n=IJ

e Average order size

X e
Vi = (85 —5) Zm‘:{j Z”=ﬂp{m. nj;

e Average reorder rate (RR)

RR = uzzlp{rx, y+ 1)+ (1 — Ziﬂp{n. U}) :



Performance Measures

Performance measures related to queueing are following:

The probability that there 15 no c-customer 1n the system (FPiq.)

&
Pigie = Zmzupm. m);

Average length of queue (L)

fa ! &
Lﬂr = Zn:lﬂznrzﬂ'ﬂ{’t‘ FH};

Average loss rate of c-customers due to lack of stock (LR)

=
LR, = +WEZ”=Upm, 0):

Average loss rate of c-customers due to arriving of n-customers (LR>)

o
LR> — —(1 - Y -1( m}).



Numerical Results

Firstly, we discuss the behavior of the performance measures versus initial parameters
under various scenarios in lTable 1.

Towards this end, the reorder point and the maximum inventory level of the system
are fixed by s = 3 and § = 10, respectively. The other parameters are vary as following;

as the arrival rate 2™ 1s varied. the others are fixed by (A7, . v, ik, @) = (1.8, 1.1, 0.6);
as the arrival rate A 1s varied, the others are fixed by (A ,u v, k.01 ) = (5.8, 1.1, 0.6);
as the service rate j¢ 1s varied, the others are fixed h}f( ALV K, q.f:'| = (5,1, 1.1, 0.6);
as the replenishment rate v 1s varied, the others are hxﬁd by { LA L, K, :;:q) =
(5,1, 8,1,0.6); as the rate of the catastrophic events x 1s varied, the others are fixed
by (Im"ﬂ AL LV, :;:I]) = (5.1. 8.1, 0.6); and the probability ¢; 1s varied, the others are

fixedby (A7, A7, p, v, k) = (4,1,8,1, 1),

"'-._.-l""'-._.-l""'-._.-l"



Numerical Results

Secondly, we provide an optimization discussion about inventory policy for some
specific parameters. For this purpose, the function of the expected total cost, ETC, is
structured as follows:

ETC = (¢t + ¢ Vay)RR + cpSay + CpsKSm' + c1(LRy + LR3) + ¢y Lay (61)

where

ci: the fixed cost of one order;

c,: the unit cost of the order size;

¢y the holding cost per item in the inventory per unit of time,

c;: the cost incurred due to the loss of a c-customer,

¢y the waiting cost of a c-customer in the system,

Cps: the damaging cost per item in the inventory.

Towards finding the optimum values of the reorder points (s™) that minimize ETC,
we vary the maximum inventory level by § = 50, 70, 90 and the values of the parameters



Table 1. Performance measures versus initial parameters.

Parameters p P Low LR, LRs S RR | -
3.2 0.587 0.36 2.0211 0.6825 06390 24768 0.7112 4.3554
i+ 3.6 0.661 0.29 2.7655 (.7844 0.7055 2.3729 0.7362 4.4831
4 0.734 0.22 39212 0.8919 0.7709 2.2691 0.7586 4.6062
4.4 0.808 .16 5.9606 1.0054 (.8354 2.1657 0.7787 4.7249
4.8 (0.881 0.10 10.5294 1.1249 (0.8991 2.0631 0.7968 4.8392
1 0.918 .06 15.8998 1.1869 0.9306 2.0123 0.8051 4.8948
1.8 0.768 0.20 4.2652 1.1281 1.4269 2.2184 .7684 4.6635
Fi 2.6 0661 0.31 23216 1.0621 1.7797 2.3634 0.7373 4.4916
34 (0.580 (.40 1.5541 1.0697 2.0355 2.4682 0.7117 4.3629
4.2 0.516 .46 1.1561 1.0551 22267 2.5468 0.6910 4.2649
7.6 0.945 0.04 23.9255 1.1849 0.9534 20213 0.8027 4.8830
8.4 0.894 0.09 12.1043 1.1887 0.9098 2.0041 0.8072 4.9056
1] 9.2 0.851 0.12 B.4447 1.1919 L8730 1.9896 0.8111 4.9247
10 0.814 0.15 B.6645 1.1946 (0.8415 1.9772 0.8144 49411
10.8 0.783 .18 5.6123 1.1969 .8143 1.9665 0.8174 49553
1 0.918 .06 15.8998 1.1869 0.9306 2.0123 0.8051 4.8948
1.8 0.756 0.22 3.7858 0.8117 0.7771 3.1789 1.0586 36612
v 2.6 (0.690 0.29 25228 lelle 07076 38868 1.1911 29106
34 0.655 0.33 2.0677 0.4892 L6692 4.3578 1.2712 24116
4.2 0.633 (.35 1.8408 0.4073 06454 46929 1.3245 20572
0.2 0.789 0.21 4.5078 (0.7848 (0.7826 2.9571 0.6114 4.0241
0.4 0.822 0.17 5.9412 0.9182 08273 2.6401 0.6785 4.3105
K 0.6 (0.854 0.13 7.8949 1.0253 (L8659 2.3882 0.7305 4.5417
0.8 0.886 0.10 10.8314 1.1133 0.9000 2.1830 0.7717 4.7331
1 0.918 0.06 15.8998 1.1869 0.9306 2.0123 0.8051 4.8948
0.1 0.437 .56 0.7730 1.8993 0.4342 25716 0.6833 4.2382
0.3 0.556 (.40 1.4358 1.4993 0.5937 2.4623 0.7129 4.3692
@4 0.5 0.675 0.28 2.7452 1.0876 0.7165 2.3379 0.7437 4.5237
0.7 0.794 0.17 5.8538 0.6808 0.8230 2.1955 0.7731 4.6917
0.9 0.913 0.07 18.2507 0.2363 0.9246 2.0334 0.8014 4.8724




in Table 2. For this study, we fix the unit values of the defined above costs by ¢ = 10,
cr = 15, ¢cp, = 10, ¢ps = 15, ¢y = 450 and ¢,, = 400.

Table 2. The optimum values of the reorder point and the expected total cost

Values of parameters 5 = 50 5 =170 § =90
At | A e v K @ ETC s* ETC" s ETC" s
6 1 16 1 1 0.6 2694.7911 17 2870.8960 26 3045.4455 a5
7 1 16 1 1 0.6 34250770 16 3596.1270 25 3A771.9921 34
8 1 16 1 1 0.6 45306860 15 4676 5780 24 48502452 33
9 1 16 1 1 0.6 6558 4322 12 6599 85548 23 GFS3.7845 33
[ 2 8 1 1 0.6 4277 9575 18 4403 4035 28 45763051 37
(3 3 B 1 1 0.6 1850078 20 3359.73094 28 A531.7546 38
& 4 8 1 1 0.6 002 9759 20 3075.7552 29 3246.7151 38
[ 5 8 1 1 0.6 IR04. 2382 20 2077 0169 29 31471726 30
& 1 & 1 1 0.6 18704 _B6SS 16 1B605. 2363 v 18755.321 e T
(2 1 10 1 1 .6 4722 6918 17 4896.7 306 26 5071.5662 B
& 1 12 1 1 0.6 3448 8654 17 36231019 26 3T9S.05826 35
& 1 14 1 1 0.6 57 7RI 17 3133.4054 26 33081553 35
[ 1 8 1 1 0.6 1870 _BESS 16 18605.2363 27 18755321 36
& 1 8 2 1 0.6 I7TR.FO09 18 39968951 27 4211.1519 36
& 1 8 3 1 0.6 2R71.8851 18 31064792 27 33369669 36
[ 1 8 4 1 0.6 3544 TITT 18 27RR.0840 27 3027 3981 36
5 1 16 1 1 & 2152 86005 18 2328 1604 27 250098095 36
5 1 16 1 2 0.6 30875624 20 3298 8199 29 3508 4478 39
5 1 16 1 3 0.6 41188440 ) 43511046 30 45683 1957 39
5 1 16 1 4 0.6 58410924 21 60890218 30 6333 3897 40
[ 1 16 1 1 0.3 2250.6602 18 24271020 27 2601.0359 36
& 1 16 1 1 0.5 2495 4774 17 2672.0209 26 2845.9204 36
& 1 16 1 1 0.7 20963 8109 17 3138.0746 26 3312 8409 as
(2] 1 16 1 1 0.9 A792 8360 16 39510096 25 41250646 34




Under Base Stock Policy

The main assumptions of the QIS model studied here are as follows:

The maximum warehouse capacities equal to S, S <oc.

Homogeneous and positive c-customers arrive at the facility with one server
according to the Poisson process at a rate of A, and each c-customer needs
a stock of unit size. The waiting room for c-customers has an infinite size.
Consumer customers from the queue are selected for servicing according to
their arrivals and their service times are assumed to be exponential with
parameter je.

Along with c-customers, the system receives n-customers with rate A=. The
influence of n-customers is as follows: (1) If at the moment of arrival of the
n-customer, there is a queue of c-customers, then one c-customer is pushed
out from the queue; (2) A n-customer can force out from the system even
a c-customer, which is in the server if a queue is empty. In such cases the
inventory level does not change, i.e. it is assumed that stocks are released
after the completion of servicing a c-customer; (3) If there are no c-customers
in the system, then the received n-customer does not affect the operation of
the system.



e The hybrid sales scheme is used, i.e. if there are no stocks in the system upon
arrival of c-customer, then, in accordance to the Bernoulli trials, it either with
probability (w.p.) ¢ joins the queue of infinite length(backorder sale scheme),
or w.p. s leaves the system unserved(lost sale scheme), where ¢, + @2 = 1.
If the stock level is positive, then the arriving c-customer is queued w.p. 1.

e Catastrophes follow the Poisson flow with the rate x, and at the moment of
arrival of such an event, all the items in the stock are instantly destroyed.
As a result of the catastrophes, even the item, which is at the status of
release to the c-customer, is destroyed, and the c-customer whose service was
interrupted is returned to the queue; in other words, the catastrophe only
destroys the stocks of the system and does not force c-customers out of the
system. If the inventory level is zero, then the disaster does not affect the
operation of the system.

e Base replenishment policy is used. It means that a replenishment is called
every time an item sells out and lead times are assumed to be exponential
with parameter v, v < o0.



Stationary Distribution

Let X; be the number of c-customers at the time and Y; be the inventory level at
the time. Then, the process {Zf,j t > [}} = {(Xt, Yt), t > ()} forms a continuous
time Markov chain (CTMC) with state space E = {D, 1,... } X {0, 1,..., S'}.

Proposition 1. The generator G of the process {Zt, t > 0} has following form:

/B A O ...0 ..\
Ay Ay Ag O O ...
G- O A2 Ay Ay O ... (62)
O O Ay A1 Agp ...

\ DDt

where O denotes zero square matrices with dimension S+1, and all other block
matrices are square matrices of the same dimension. Entities of the block matri-
ces

B =| b;; || and A, =| aﬁf} |, 1,j=0.1, ..., S are given by




((S—d)vif 0<i<S—-1, j=i+1
kif 0<i<S, =0
bij = ¢ —(Sv+Atpy)if i=j=0

L0 in other cases:

Aprif i=35=0
ay) = QAT i A0, i=j
(0  in other cases;

((S—i)vif 0<i<S—-1, j=i+1
wif >0, j7=0
aV = —(A"+Sv+Atg)if i=5=0

1]

|0 in other cases:;

ATif i=j
pif >0, j=1i-1
(0 in other cases.

2) _

a;;

._03_4pﬁ+k+h+)ﬁ 0<i <8, i=j,

—((S—i)u +rs:+,t1,+l++)s_) it O0<i <5,

(63)

(64)

(65)

(66)



Proof. The transition rate (ni,mi) — (n2,ms2 )is denoted as q((ni,m1);
(n2,mo)). By taking into account the assumptions made in Sect. 2, we conclude
that the indicated parameters are calculated as follows:

(a) Transitions due to the arrival of c-customers:

ni,mi) — (n1 +1,0) : the rate is ATy, for mq =0;
(n1,ma) — ( ) ®
(nl,ml) - (nl - l,ml) :the rate is AT, for O<m; < S.

(b) Transitions due to the arrival of n-customers:
(n1,mp) — (n1 — 1, my) : the rate is A™, for n;>0.

(c) Transitions due to service completion of c-customers (ny,m;) — (n1—1,m;—
1) : the rate is u, for ny >0, mq; > 0.

(d) Transitions due to catastrophes: (ny,m;) — (n1,0) : the rate is &, for m; > 0.

(e) Transitions due to replenishment: (n1,m1) — (ni,mi + 1) : the rate is (S —
my)v, for 0 < m;<S

All other transition pairs have a rate of zero.



So, we have the following relations:

q((n1,m1); (n1 +1,0)) = ATy - x(my = 0); (67)
q((n1,m1); (ny + 1,my)) = AT - x(m;>0); (68)
q((n1,m1); (n1 — 1,m1)) = A~ - x(n1>0); (69)

q((n1,my); (m — 1,my — 1)) = p- x(n1>0) - x(m1>0): (70)
q((n1,m1);(n1,0)) = K - x(m1>0); (71)
g((n1,m1); (n1,my + 1)) = (S —my)v - x(0 < mi<S). (72)

Hereinafter, y (A) is the indicator function of the event A, which is 1 1t A
is true and 0 otherwise. By considering a lexicographic order of the system’s
states, (0,0),(0,1),...,(0,S):(1,0),(1,1),...,(1,S); ...:(2,0),(¢,1),...(7,5);...from
relations (67)-(72) we conclude that the generator G of the process Z;.t = 0
might be represent via relations (62)-(66)



Proposition 2. The process {Zt,t > 0} is ergodic if and only if the following
condition is fulfilled:

AT(1 = pam(0)) <A™ + (1 = m(0)), (73)
where
S -1
w(m) = bm( bi) (74)
1=0
and parameters b,,, m = 0, 1, ..., S, are calculated via the following reverse

recursive formulas:

[S_lfn)u ({IS—rrL—lbrrL+1 — #bm+2) if 0< m<S —2
b, — g%(aS—rn—lb’rn-{-l — ﬂr) if m=5-—2 (?5)
" 2 if m=95-1,

Lif m=.5:;
an =p+k+nv,n=12,...,8—1;



Proof. By Neuts (1981), pp. 81-83, the process {Zt,t = U} is ergodic if and

only if

mApe<mAse, (76)
where w = (7w(0),7(1),...,7(S)), is the stationary probability vector that cor-
respond to generator A = Ag + A; + As and e is column vector of dimension

S+1 that contains only 1 s.
From relations (64)-(66) conclude that the nonzero entities of the matrix A are
determined as follows:

(—Svif i=j=0,

(S —d)r if 0<i< S —1, j=1i++1,
u+rif i=1, 5 =0,

wif i>1., j§ =0,

—pif >0, 4§ =1,

pif i>2, j=1i—1.

(77)

In other words, we have balance equations for stationary probability vector

mA = 0,me = 1, (78)

where 0 is the null row vector of dimension S+1.



Note 2. Consider the following special cases.

(1)

(i)

(iii)

If oo = 1 (i.e. when purely lost sale scheme is used) and A~ = 0 (i.e. when
there are not n-customers) from (73) we find the ergodicity condition for
the single-server Markovian queuing system, i.e., AT < u, i.e. in this case,
the ergodicity condition of the system does not depend on the storage size
of the system, the rate of catastrophes, and the replenishment rate.

If oo = 1 and A7 =0 then the ergodicity condition is depending on all
indicated parameters of the system, see formulas (75)

If oo = 0 (pure backorder scheme is used) then the ergodicity condition is
depending on all indicated parameters of the system even for case A= = 0,
see formulas (75)

Steady-state probabilities that correspond to the generator matrix G we denote
b}r P = (p{11p11p21 - - =): where Pn = (p(Tla D)* p(ﬂ“.r 1)? ==ey p(n‘} S))& n = 0,1,....
Under the ergodicity condition (73) desired steady-state probabilities are deter-
mined from the following equations:

Pn = polR.n =1, (79)

where R is the non-negative minimal solution of the following quadratic matrix
equation:

RBAE + RA, + Ag = 0.



Performance Measures

Main performance measures can be divided into two groups: stock-related met-

rics and queuing-related metrics. Stock-related metrics are the following:

e Average inventory level (S, )

m,_z zp<nm

e Destruction rate of the stocks (DRS):

s o]

DRS = k(1 — Zp(n,,ﬁ))

e Average reorder rate (RR)

S 00
RR:ﬁzp(o,mH(ﬂH)Z Y p(n,m

(19)

(20)

(21)



Performance Measures

Main performance measures can be divided into two groups: stock-related met-
rics and queuing-related metrics. Stock-related metrics are the following:

e Average inventory level (S, )

S o0
Sav = Z m Zp(n,m) (30)

m=1 n=I()

e Destruction rate of the stocks (DRS):

o0

DRS = r(1 = p(n,0)) (81)
n=0

e Average reorder rate (RR)

S oo 5
RR =k Z p(0,m) + (1 + K) Z Z p(n,m); (82)



Performance Measures

Queuing-related metrics are the following:

e Loss rate (LR) of c-customers

00 S
LR = \" ¢, Zp(ﬂ, 0)+ A~ (1 — Z p(0, m)) (83)
m=0

n=0

e Average length of the queue of c-customers (L, )
S

o0
L., = E n
n=1 m

p(n,m) (84)
0



Numerical Results

In Tables1 through 6, we display the behavior of main system performance
measures as well as Expected Total Cost (ETC) versus initial parameters. ETC
is defined as follows:

ETC = K - RR + ¢4,Suy + caDRS - Spy + 1LR + o Lo (24)

where K is the fixed price of one order, ¢; is the price of unit inventory holding
per unit of time, ¢4 is the price of unit inventory destruction, ¢; is the cost for a
single c-customer loss, ¢, is the price per unit time of queuing delay for a single
c-customer.

In all our examples we take S = 50 and values of other parameters are shown
in the table’s titles. The coefficients in the expression for the functional in ETC
(see (25)) were chosen as follows: K = 10, ¢, = 20, ¢; = 10, ¢ = 20, cq = 40.

Due to the limited volume of the paper, a detailed analysis of the results of
numerical experiments is left to the reader. Here we briefly analyze the presented
tables.

Common to all tables is the conclusion that all performance measures as
well as ETC change smoothly. We register the following observations from these
tables.



Numerical Results

In Tables1 through 6, we display the behavior of main system performance
measures as well as Expected Total Cost (ETC) versus initial parameters. ETC
is defined as follows:

(85)

EFTC =K -RR+¢,S,, +cqgDRS-S,, +¢glLR+c¢,L,,.

where K is the fixed price of one order, ¢; is the price of unit inventory holding
per unit of time, ¢4 is the price of unit inventory destruction, ¢; is the cost for a
single c-customer loss, ¢,, is the price per unit time of queuing delay for a single
c-customer.

In all our examples we take S = 50 and values of other parameters are shown
in the table’s titles. The coefficients in the expression for the functional in ETC
(see (86)) were chosen as follows: K = 10, ¢;, = 20, ¢; = 10, ¢, = 20, ¢q = 40.

Due to the limited volume of the paper, a detailed analysis of the results of
numerical experiments is left to the reader. Here we briefly analyze the presented
tables.

Common to all tables is the conclusion that all performance measures as
well as ET'C change smoothly. We register the following observations from these
tables.



Numerical Results

An increase AT results in a decrease(with very slow rate) in measures S,,,
DRS and ETC; other measures are increasing versus A" (see Table1).
Measures S,,, DRS and ETC are increasing(with very slow rate)ones versus
A~ ; other measures are decrease (see Table 2).

An increase pu results in a decrease in measures S,,, DRS (with very slow
rate), L,,, ETC; other measures areal mos constants (see Table 3).

Sav. ETC increase strongly compared to v, and DRS and RR also increase,
but very slowly; other measures are decreasing (see Table4).

An increase in k leads to strong changes in all stock-related indicators and
ETC, and only S,, decreases compared to k: queue-related metrics are
increasing at a moderate rate (see Table5).

All performance measures are almost constants versus ¢, only RR and L,
are increased at a very slow rate (see Table6).



Table 1. Effect of AT on the performance measures; A\~ = 2, &

Y1 = 0.6.

)‘+

Sav

DRS

RR

LR

Lav

ETC

5

24.3136

2.9395

5.9222

0.0202

0.7256

3418.97

5.2

24.2861

2.9394

6.1198

0.0202

0.7772

3418.14

5.4

24.2587

2.9393

6.3174

0.0202

0.8319

3417.37

5.6

24.2312

2.9393

6.5151

0.0202

0.8901

3416.66

5.8

24.2037

2.9392

6.7126

0.203

0.9522

3416.04

6

24.1763

2.9391

6.9102

0.0203

1.0185

3415.50

6.2

24.1489

2.9391

7.1078

0.0203

1.0894

3415.05

6.4

24.1214

2.9390

7.3054

0.0203

1.1655

3414.71

6.6

24.0941

2.9389

7.503

0.0204

1.2474

3414.48

6.8

24.0665

2.9389

7.7006

0.0204

1.3357

3414.38

7

24.0391

2.9388

7.8981

0.0204

1.4312

3414.42




Table 2. Effect of A\~ on the performance measures; A\t =6, kK = 3, p = 10, v = 3,

©1 = 0.6.

Sﬂv

DRS

RR

LR

ETC

24.1000

2.9389

7.4594

0.0204

1.2289

3414.52

1.2

24.1164

2.9390

7.3416

0.0203

1.1801

3414.66

1.4

24.1322

2.9390

7.2279

0.0203

1.1351

3414.83

1.6

24.1474

2.9391

7.1183

0.0203

1.0934

3415.03

1.8

24.1621

2.9391

7.0125

0.0203

1.0546

3415.26

24.1763

2.9391

6.9102

0.0203

1.0185

3415.51

2.2

24.1901

2.9392

6.8114

0.0203

0.9848

3415.76

2.4

24.2033

2.9392

6.7158

0.0203

0.9532

3416.03

2.6

24.2162

2.9392

6.6233

0.0203

0.9236

3416.32

2.8

24.2286

2.9393

6.5337

0.0202

0.8958

3416.61

24.2407

2.9393

6.4469

0.0202

0.8696

3416.91




Table 3. Effect of ;1 on the performance measures; A" =6, k =3, A\~ =2, v = 3, ¢,

= 0.6.

# | iSau DrS [BRR [tR |Z. |ETE
9 | 24.1883 | 2.9392 | 6.9088 | 0.0203 | 1.1761 | 3420.32
9.2 | 24.1851 | 2.9392 | 6.9092 | 0.0203 | 1.1323 | 3419.00
9.4 |24.1822 | 2.9392 | 6.9096 | 0.0203 | 1.0916 | 3417.77
9.6 | 24.1791 | 2.9391 | 6.9099 | 0.0203 | 1.0538 | 3416.60
9.8 |24.1763 | 2.9392 | 6.9102 | 0.203 | 1.0185 | 3415.50
10 | 24.1736 | 2.9391 | 6.9105 | 0.0203 | 0.9855 | 3414.46
10.2 | 24.1709 | 2.9391 | 6.9108 | 0.0203 | 0.9545 | 3413.47
10.4 | 24.1683 | 2.9391 | 6.9111 | 0.0203 | 0.9255 | 3412.53
10.6 | 24.1658 | 2.9391 | 6.9114 | 0.0203 | 0.8981 | 3411.63
10.8 | 24.1634 | 2.9391 | 6.9117 | 0.0203 | 0.8724 | 3410.78
11 | 24.1611  2.9391 | 6.9121 | 0.0203 | 0.8481 | 3409.97




Table 4. Effect of v on the performance measures; A\™ =6, Kk = 3, A\~ = 2, u = 10,

Y1 = 0.6.

Sau

DRS

RR

LR

Lau

ETC

11.2953

2.8121

6.7197

0.0626

1.0631

1585.54

13.1308

2.8445

6.7687

0.0518

1.0509

1845.88

14.8016

2.8674

6.8032

0.0442

1.0427

2083.06

16.3284

2.8844

6.8287

0.0385

1.0367

2299.9

17.6057

2.8901

6.8456

0.0342

1.0301

2423.5

19.0176

2.9081

6.864

0.0306

1.0286

2682.03

20.2076

2.9166

6.8767

0.0278

1.0258

2851.19

21.3098

2.9337

6.8872

0.0254

1.0235

3007.88

22.3334

2.9296

6.8961

0.0235

1.0215

3153.43

23.2866

2.9347

6.9037

0.0218

1.0199

3288.97

24.1763

2.9391

6.9102

0.0203

1.0185

3415.50




Table 5. Effect of k on the performance measures; \™ =6, \™ =2, v =3, u = 10, ¢

= 0.6.

Sav

DRS

RR

LR

Lﬂ.lf

ETC

34.4452

1.2001

6.0726

0.0083

1.0074

2423.34

1.2

32.9607

1.3866

6.162

0.0096

1.0086

2569.23

1.4

31.4601

1.5923

6.2608

0.0112

1.0099

2715.87

1.6

30.2156

1.7779

6.3499

0.0123

1.0111

2836.97

1.8

28.9499

1.9825

6.4483

0.0137

1.0124

2959.58

27.8928

2.1671

6.5372

0.0157

1.0135

3061.49

2.2

26.8604

2.3609

6.6307

0.0163

1.0148

3160.55

2.4

25.9018

2.5542

6.724

0.0176

1.0161

3252.07

2.6

25.0093

2.7469

6.8172

0.0191

1.0173

3336.82

2.8

24.1763

2.9391

6.9102

0.0203

1.0185

3414.38

23.397

3.1309

7.0031

0.0216

1.0197

3488.68




Table 6. Effect of ¢; on the performance measures; AT =6, A\~ = 2, &

= 10.

P1

Sﬂ.ll

DRS

RR

LR

ETC

24.1863

2.9392

6.8381

0.0203

0.9931

3415.72

0.1

24.1847

2.9392

6.8501

0.0203

0.9972

3415.68

0.2

24.1831

2.9392

6.8621

0.0203

1.0014

3415.64

0.3

24.1813

2.9392

6.8741

0.0203

1.0056

3415.60

0.4

24.1796

2.9392

6.8862

0.0203

1.0099

3415.57

0.5

24.178

2.9392

6.8982

0.0203

1.0142

3415.53

0.6

24.1763

2.9391

6.9102

0.0203

1.0185

3415.50

0.7

24.1746

2.9391

6.9223

0.0203

1.0229

3415.46

0.8

24.1732

2.9391

6.9343

0.0203

1.0273

3415.43

0.9

24.1713

2.939

6.9464

0.0203

1.0317

3415.40

24.1696

2.9391

6.9584

0.0203

1.0362

3415.37

3, v



Models of Finite Queuing-Inventory
Systems Under (s, S) Policy

Consider a single-server finite QIS in which the warehouse has a maximum capacity S.
Arriving homogeneous c-customers are represented by a Poisson flow with intensity A™.
Customer homogeneity means that each customer requires the same amount of inventory.
The service times of the c-customers are independent identically distributed (i.i.d.) random
variables with an exponential cumulative distribution function (c.d.f.); its mean value
is equal to #~! and the inventory level decreases by one unit when c-customer service
ends. The waiting room for queuing c-customers has a finite size R, R < co. This means

that if, when a c-customer arrives, the buffer is completely occupied, then the arriving
new c-customer is lost with probability (w.p.) 1; otherwise, the arriving c-customer will
enter the buffer if the server is busy. A combined sales scheme is applied, i.e., if upon the
arrival of a c-customer, the warehouse is empty, then, in accordance with the Bernoulli
trials, the customer either enters the buffer w.p. ¢, or leaves the system without items w.p.

(}92:1—q)1.



In addition to c-customers, the system also receives negative customers (n-customers)
with intensity A~. Negative customers require no service or inventory, but upon the
arrival of such customers, one c-customer is pushed out of the system, if any. The detailed
procedure of managing the pushing out of the c-customer is as follows: (1) if there is a
queue of c-customers, then only the c-customer is pushed out of the queue; (2) if there is
no queue of c-customers and only the c-customer is receiving service, then the n-customer
evicts the c-customer, which is located in the server, from the system (in these cases the
inventory level remains the same since items are released after the completion of servicing
a c-customer); (3) if there are no c-customers in the system (in buffer or on the server), then
the arrived n-customer does not impact the operation of the system.

Catastrophes are represented by a Poisson flow with intensity x, and when a catas-
trophe occurs, all inventory is instantly destroyed. The catastrophe destroys even the
items that are allocated for sale to the c-customer. In this case, the interrupted c-customer
returns to the buffer, i.e., the catastrophe only destroys the items and does not push out the
c-customer from the system. Catastrophes do not affect the operation of the warehouse if it
1s empty.



In order to be specific, here, (s, S) is the inventory replenishment policy considered
(sometimes this policy is called “Up to S” as well). This means that when the inventory
level drops to the re-order point s, 0 < s < §, a replenishment order is placed, and upon
replenishment, the inventory level is restored to level S, regardless of how many items
were In inventory.

The lead times of the replenishment’s i.i.d. variables with exponential c.d.f. are
represented by the average value of the lead times, which is equal to v,

The problem is to find the joint distribution of the number of c-customers in the system
and the inventory level in the warehouse, as well as to calculate the main performance
measures: the mean number of items in the warehouse, the mean order size, and the mean

re-order rate, which includes the mean length of the queue and the loss rate of c-customers.



Steady-State Analysis
An Exact Approach

This subsection proposes an exact method for obtaining the steady-state probabilities
and the main performance measures defined above. As in Melikov et al. (2023) [12], let
X be the number of c-customers at time t and Y; be the inventory level at time t. So, the
process Z; = {(Xt,Y:), t > 0} forms a two-dimensional continuous-time Markov chain (2D
CTMC) with the following state space:

E = U Em (86)

m=0

where E,,, = {(0,m), (1,m),---, (R, m)} is the subset of states in which the inventory level
isequaltom,m =0,1,---,S.

The transition rate from micro-state (14,m,) to micro-state (73 ,my) is denoted by
q((ny,mq), (np,my)). By taking into account the assumptions related to operating the
investigated QIS, we obtain the following relations to determine these transition rates:



(A @y, my=my =0,ny =ny+1,
AT, my=m >0,np =n1+1,
AT, Mo = My, Ny = np — 1, (87)
u, mp=m;—1,ny=ny—1,
K, mq1>0,m=0,n = n,
L v, my <s,my= 5,1 = n.

q((n1,my), (n2,mz)) = X

From relations (2) we conclude that each state of the constructed 2D CTMC can be
reached from any other state through a finite number of transitions, i.e., the considered
chain is an irreducible one. In other words, for each positive value of the loading parameters,
a steady-state regime exists. Let us denote by (1, m) the probability of the state (1, m) € E.
The desired steady-state probabilities are obtained as a solution of the system of balance
equations (SBE), constructed using relations (87)

Case 1: When (n,0) € Ey, the following is true:

(At @ix(n < R)+ A x(n >0)+v)p(n,0) =A"gp(n—1,0)x(n > 0)

+A"p(n+1,0)x(n < R) + up(n+1,1)x(n < R) + «¥5 _ p(n,m). (88)



Case 2: When (n,m) € E;, 0 < m < s, the following is true:

Ax(n<R)+XNx(n>0)+v+u+«k)pn,m)=A"pn-1m)x(n>0)

+A"p(n+1,m)x(n < R) + up(n+1,m+1)x(n < R). (89)
Case 3: When (n,m) € E,;, s < m < S, the following is true:
A"x(n <R)+AN x(n>0)+u+«)p(nm)=Apn—1,m)x(n >0) (90)

+A"p(n+1,m)x(n < R) +up(n+1,m+1)x(n < R).
Case 4: When (n,S) € Eg, the following is true:

(Ax(n < R)+A"x(n>0)+pu+«)p(nS) =A"pn-1,5)x(n >0)

AT p(n+1,8)x(n < R) + up(n+1,m+1)x(n < R) +v5%,_o p(n,m). O

Here and below, x(A) is the indicator function of the event A, i.e., it is equal to 1 if
A is true; otherwise, it is equal to 0. A normalization condition should be added to SBE
(88)-(91), i.e., the following is true:

E{n,m]EE p(ﬂ, ?ﬂ) =1  (92)



The constructed SBE(88)-(92)is a system of linear algebraic equations of dimension
(R+1)-(S+1), and it can be solved numerically using known software if the QIS has
moderate buffer and storage sizes.

After determining the steady-state probabilities, the main characteristics of the QIS
under study can be calculated using a standard technique. These characteristics are divided
into two groups: (1) inventory-related performance measures and (2) queuing-related
performance measures. The first group of characteristics includes the mean number of
items in the warehouse (S,; ), the mean order size (V,;), and the mean re-order rate (RR).

e The mean number of items in the warehouse (i.e., the average inventory level) is
calculated as a mathematical expectation of the appropriate random variable and is
given by the following:

Seo =Y oy MY o p(n,m). (93)



Similar to(93) the average order size (i.e., the average size of replenished items from
external source) is calculated as a mathematical expectation of the appropriate random
variable and is calculated as follows:

S R
Vo = 2m=5—s ’”E,;:u p(n,S—m). (94)

An inventory order is placed in two cases: (1) if the inventory level drops to the
re-order point s after completing customer service in states (1,5 + 1) € E; 41, or (2) if
catastrophes occur in the states (n,m) € E,;, m > 0. Therefore, the average reorder
intensity is calculated as follows:

RR = YR p(n,s+1)+x(1- X p(n,0)). 93)



The second group of performance measures includes the average length of the queue
(Lgy) and loss rate of c-customers (LR).

e The mean length of the queue is calculated as a mathematical expectation (an average
value) of the appropriate random variable and is given by the following:

L= ZS___I ”Zizzo p(n,m). (96)

e Losing c-customers occurs in three cases: (1) if, at the time the c-customer arrives,
the waiting room is full (with probability 1), i.e., the system is in one of the states
(R,m) € E,;,,m=0,1,---,5; (2) if, at the time the c-customer arrives, the inventory
level is zero and the waiting room is not full (with probability ¢,), i.e., the system is in
one of the states (1n,0) € Ey, n < R; (3) when an n-customer arrives, it displaces one
c-customer. Therefore, the loss rate of c-customers is calculated as follows:

LR = )\+Z§1:O p(R,m) + )\+(p22f=_3 p(n,0) + A~ (1 - ZZ:O p(0, m)). (97)



An Approximate Approach

In this subsection, we derive the closed-form approximate solution for the steady-state
probabilities of the investigated 2D CTMC by using a space merging approach
This approach is highly accurate for systems with rare catastrophes, i.e., it is assumed
that k < min(A+, A, u). Note that the last assumption is not extraordinary, since in the
opposite case (i.e., when the rate of catastrophes is close to the rate of c-customers, the
speed of their service, and the rate of n-customers), the QIS under consideration is generally
not effective.

In the case where the above assumption is fulfilled, the basic requirement for an
adequate application of the space-merging method is satisfied. In this case, transition rates
between states in each subset E,;, (see (1)) are much greater than the transition rates between
states from different subsets. So, in accordance with the space merging algorithm, a subset
of states E,; in (1) is combined into one merged state < m >, and the merging function in
the initial state space (1) is defined as follows: U(n,m) =< m >, (n,m) € E. The merged
states constitute the set E = {<m>:m=0,1,...,5}. Then, to calculate the approximate
values of steady-state probabilities, p(m, n), we have the following formula:

p(n,m) =~ py(n)m(< m>) (98)



where p,,, (1) denotes the probability of state (1, m) within subset E,;, and 7t(< m >) denotes
the probability of merged state < m >¢ E.

From relations (2), we conclude that the state probabilities pg(12), n = 0,1, - - - , R within

a split model with the state space Ej coincide with the distribution of a finite birth—death

process in which the birth rate is A" ¢, while the death rate is A ™. In the same way, from

relations (2), we conclude that the state probabilities p,, (1), m > 0,n =0,1,--- , R within a

split model with the state space E;; are independent of m and coincide with the distribution

of a finite birth—death process in which the birth rate is A", while the death rate is A ™. In

other words, state probabilities within split models are determined as follows:

1= m>0n=01,...,R
om(n) = {9”—1ng§1 m=0,n=0,1 R =)
0 _gR+T" ; , L wny

where 6) = AT @1 /A" and 0 = 6/ ¢1.



Note 1. To simplify the notation, for cases m > 0 below, the subscript m is omitted in state proba-
bilities 0,y (n). In cases where 0 = 1 and/or 0y = 1, all state probabilities p,,(n) = 1/ (R + 1) for
eachn, n=20,1,..., Rand m, m =0,1,...,S.

Let us denote the transition rate from the merged state < m; > to the merged state
< my >byq(< my >, < mp >). Then, taking into account relations (2) and (14), we propose
the following formulas for determining these rates (all other transition rates are zero):

Case0<m<s:

g(<m>,<S>)=vY " pm(n)="v. (100)
Casem > 0:
g(<m>,<0>)=xY_"  om(n) = «; (101)
g(<m>,<m—1>)=puY " pw(n) = u(1—p(0)). (102)

In other words, the merged model represents a one-dimensional Markov chain in state
space E where transition rates between merged states are calculated via Formulas (100)-(101)
Using the approach proposed in (96) we develop the following closed-form formulas for
calculating the probabilities of merged states:



1 4+ bc

_ (103)
7t(0) = 1+ dc”’
(1) = d7t(0) — b, (104)
m(m) = amt(1l),2 <m < S, (105)

where the following statements are true:

_— v+K S K
d= u(1—p(0))” b = H(1—p(0))”

=35 _ a a, — (1+da)y" 1, ifl=m=s+1,
m—=1 Y Ui (1_{_d)5<1_|_b)n1—5—1; ifs+1 < m<S.

Eventually, taking into account Formulas (13), (14), and (18)—(20), we conclude that the

approximate values of performance measures (8)—(12) can be calculated using the following
explicit formulas:

Sao = 3,y m7T(m); (106)

Vio = 3 _ps o m7t(S — m); (107)
RR = pu(1 — p(0))7t(s + 1) +x(1 — 7x(0)); (108)
Loo =Y 4 1(po(n)7w(0) + p(n)(1 — 77(0))); (109)

LR = A" ¢a7(0)(1 = po(0)) + A" po(R)7(0) + AT (1 — 7(0))p(R)+

(110)
A~ (7(0)(1 = po(0)) + (1 —7(0))(1 — p(0)))



Numerical Experiments

The accuracy of the proposed approximate formulas is investigated via numerical
evaluations. For this purpose, exact values of the steady-state probabilities (S5P) are
determined from SBE (3)—(7) for the QIS with a maximum capacity of warehouse S = 50
and buffer size R = 30, where the dimension of SBE is equal to 1581. The accuracy of
the developed approximate formulas can be estimated using several norms, e.g., cosine
similarity, Euclidean distance, Jaccard norm, etc. To be specific, here, we use a simple
norm, that is, the maximum errors when calculating SSPs. Some results of numerical
evaluations are shown in Table 1. In this table, along with an indication of the accuracy
of calculating the SSPs, results are given that indicate the accuracy of calculating the
performance measures (8)—(12). From this table, we conclude that the accuracy of the
proposed approximate formulas for calculating SSPs and performance indicators is high
tor engineering applications. From this table, it is also clear that the accuracy of calculating
the SSPs is greater than the accuracy of calculating performance indicators. This was to be
expected, since the performance indicators are calculated through SSPs using operations
of multiplication by large numbers; see Formulas (8)—(12) and (21)—(25). We conducted a
large number of experiments and summarize only a small part of them here. An interesting
result of these experiments is that the larger the system size (i.e., increasing S and R), the
higher the accuracy of the approximate results obtained.



Table 1. Dependence of the absolute error of the SSPs and performance measures vs. s; AT = 15,
AT =1Lu=2,xk=01v=1¢ =04

s Max of Error Error for
for SSPs Sav Vo RR | J— LR
0 1.17 x 1073 701 %1072 112x10°Y 123x107%2 141x10°! 154x102
5 1.02 x 103 605x1071 113x107%2 1.05x102 1.02x10°1 127x102
10 215 x 103 311 %1072 229%x10°%2 191x107%2 117x107! 136x102
15 8.77 % 104 402x1072 301x102 514x102 143x10°! 1.78x10?
20 7.01 x 104 318 107! 608 %1072 4.02x107%2 201x10"! 215x102
25 3.73 x 103 5.02x1072 711x10°%2 272x1072 2.02x10"1 3.01x102
30 216 x 103 1.08 %1072 433x102 505x107% 1.04x10"! 202x102
35 241 % 103 313 x 1071 1.02x10°! 192%x1072 151x101 132x102
40 1.24 x 103 1.02x10°! 812x102 182x10% 111x10°! 1.03x10°2
45 3.45 % 103 1.03x10°Y 201%x107!Y 1.09%x10% 121x10°! 117x10°2
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Optimization Problem

The third goal of performing numerical experiments is solving the optimization
problem. To be specific, here, the minimization of Expected Total Cost (ETC) is considered.
In this problem, it is assumed that all load parameters and structural parameters of the QIS
are fixed, and the only controllable parameter is the reorder point. Similar to Melikov et al.

(2023) [11], ETC is defined as follows:
ETC(S) —_ (K —|_ Ej"Vﬂﬂ)'RR —|_ Eh's,ﬂ[: —|_ Cps'k:‘saﬂ —I_ C;'LR + CTL"LHU {26)

where K is the fixed price of one order, ¢, is the unit price of the order size, ¢, is the unit
item storage price per unit of time, ¢y is the price of unit item destruction, ¢; is the cost
for a single consumer customer loss, and ¢y, is the price per unit time of delay for a single
consumer customer.

The problem is to find a value (optimal) of s that minimizes (26). For any values
of initial parameters, this problem has a solution, since the admissible set for values
of s is finite and discrete, i.e.,, 0 < s < S — 1. Coefficients in (26) for the hypothetical
model are selected as K = 10,¢, = 15,¢, = 10,¢; = 450, ¢, = 400, and cps = 15. Some
results of the minimization of (26) are demonstrated in Table 2. Here, we assume that
N =30, ¢ =04, A" =15, A7 =1, xk = 0.1, 4 = 2, and v = 1. The optimal solution
for indicated values of S is s* = 0. For completeness, Table 2 shows the values of the



Some directions for further research

l. QIS with state (both queue and inventory level)-dependent RPs.

Melikov A., Chakravarthy S.R. A new admission control scheme in queuing-inventory
system with two priority classes of demands // OPSEARCH. 2024. doi.org/10.1007/s12597 -
024-00877-8.

Melikov A., Rumyantsev A. State-Dependent Admission Control in Heterogeneous
Queueing-Inventory System with Constant Retrial Rate // Lecture Notes on Computer
Science. 2025. V. 15460. P. 156-170.

Melikov A., Ozkar S. Algorithmic approach to study queueing-inventory systems with
queue-dependent hybrid replenishment policy // Communications in Computer and
Information Science. 2025. V. 2472.

Melikov A., Ozkar S. Analysis of queuing-inventory system with state-dependent
replenishment policy // Operations Research. An International Journal. 2025. (In press)



Some directions for further research

1. QIS with multiple sources for replenishment.

Melikov A., Lawrence S. Sivakumar B. Analysis and optimization of hybrid replenishment
policy in a double-sources queueing-inventory system with MAP arrivals // Annals of
Operations Research. 2023. V. 331. Iss. 2. P. 1249-1267.

[11. QIS with various types of customers (priorities, various size of inventory requirements,

etc.,)
Otten S., Daduna H. Stability of queueing-inventory systems with customers of different

priorities. Annals of Operations Research. 2023. V. 331. Iss. 2. P. 963-983.



*Thanks for attention
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